
Defence R&D Canada – Atlantic

DEFENCE DÉFENSE
&

AIMSsim version 2.2.1

User Manual

Oliver Schoenborn
CAE Professional Services

CAE Professional Services
1135 Innovation Drive, Suite 300
Ottawa, Ontario K2K 3G7

Project Manager: Paul Krga, 613-247-0342

Contract Number: W7711-047904/TOR/001

Contract Scientific Authority: Jacquelyn M. Crebolder, 902-426-3100 x296

Terms of Release: The scientific or technical validity of this Contract Report is entirely the responsibility of the
contractor and the contents do not necessarily have the approval or endorsement of Defence R&D Canada.

Contract Report

DRDC Atlantic CR 2006-280

March 2007

Copy No. _____

Defence Research and
Development Canada

Recherche et développement
pour la défense Canada

This page intentionally left blank.

DRDC Atlantic CR 2006-280 i

AIMSsim version 2.2.1
User Manual

Oliver Schoenborn
CAE Professional Services

CAE Professional Services
1135 Innovation Dr., Suite 300
Ottawa, ON K2K 3G7

Project Manager: P. Krga, 613-247-0342

Contract number: W7711-047904/TOR/001

Contract Scientific Authority: Jacquelyn Crebolder, 902-426-3100 x296

Terms of Release: The scientific or technical validity of this Contract Report is entirely
the responsibility of the contractor and the contents do not necessarily have the approval
or endorsement of Defence R&D Canada.

Defence R&D Canada – Atlantic
Contract Report
DRDC Atlantic CR 2006-280
March 2007

Author

Oliver Schoenborn

Approved by

Jacquelyn Crebolder

Approved for release by

Kirk Foster

DRP Chair

© Her Majesty the Queen as represented by the Minister of National Defence, 2007

© Sa majesté la reine, représentée par le ministre de la Défense nationale, 2007

Original signed by Jacquelyn Crebolder

Original signed by J. L. Kennedy

DRDC Atlantic CR 2006-280 i

Abstract

This user manual provides an overview of how to use the software developed to
support the empirical investigation of a simulated user interface for an Advanced
Integrated Multi-sensor Surveillance (AIMS) system (formerly known as the
Enhanced Low-Light Level Visible and Infrared Surveillance System – ELVISS).
The AIMS system is an electro-optical imaging system being developed by the
Defence Research and Development Canada (DRDC) – Valcartier to enhance the
capability of search and rescue (SAR) crews to operate effectively at night and in
degraded weather conditions. In order to ensure that a SAR operator would be able to
use the system effectively and with a minimal amount of training, a prototype human-
machine interface (HMI) was developed to evaluate design concepts. The latest
development phase added important tracking and motion-related functionality
(amongst other things) to the system and gave it a new name AIMSsim.

Résumé

Le manuel de l’utilisateur fournit une vue d’ensemble sur l’utilisation du logiciel
développé pour appuyer la recherche empirique d’une interface-utilisateur de
simulation pour le système AIMS - système multicapteur intégré de pointe pour la
surveillance (anciennement connu sous l’appellation ELVISS - système perfectionné
de surveillance à intensification de lumière visible et à infrarouge). Le système AIMS
est un système d’imagerie électro-optique mis au point par Recherche et
Développement pour la défense Canada (RDDC) – Valcartier pour améliorer les
capacités de l’équipe de recherche et sauvetage (SAR). Elle pourra donc effectuer ses
missions de façon plus efficace dans l’obscurité et dans de mauvaises conditions
météorologiques. Afin de s’assurer que l’opérateur SAR est capable d’utiliser
adéquatement le système et ce avec une formation minimale, un prototype d’interface
homme-machine (HMI) a été élaboré pour évaluer les principes de conception. La
dernière phase d’élaboration a, entres autres, permis de munir le système d’une
importante fonction de localisation et d’une fonction relative au mouvement. Ces
ajouts lui ont valu une nouvelle appellation, AIMSsim.

ii DRDC Atlantic CR 2006-280

This page intentionally left blank.

DRDC Atlantic CR 2006-280 iii

Executive summary

Introduction
This document provides instructions for the installation and use of software developed
to support empirical investigation of a simulated user interface for an Advanced
Integrated Multi-sensor Surveillance (AIMS) system (formerly known as the
Enhanced Low-Light Level Visible and Infrared Surveillance System – ELVISS).

A multi-sensor surveillance system, the Advanced Integrated Multi-sensor
Surveillance (AIMS) system, is being developed to increase the capability of Search
and Rescue (SAR) and Maritime patrol. The AIMS system will enhance the capability
of SAR particularly at night and in poor weather. Earlier versions of AIMS were the
Airborne Laser Based Enhanced Detection and Observation System (ALBEDOS), and
the Enhanced Low-Light Level Visible and InfraRed Surveillance System (ELVISS).
The AIMS system advanced through the integration of four sensors into a single
gimball. A research platform that simulates use of the airborne sensor interface and
controls has been developed at Defence Research and Development Canada (DRDC)
to support evaluation of interface design concepts and to address human performance
issues related to operating the AIMS and similar electro-optical imaging systems.

In order to ensure that a SAR operator would be able to use the system effectively and
with a minimal amount of training, a prototype human-machine interface (HMI) was
developed to evaluate design concepts. The VAPS HMI prototype (ELVISS),
developed for the Silicon Graphics, Inc.’s (SGI) platform, provided a cost effective
method for evaluating the impact of design characteristics of dual sensor systems on
operator performance. However the capability was limited and the architecture was not
designed to support systematic investigation of the usefulness of the proposed system
under different conditions or to manipulate the sensor and interface characteristics.

Results
The ELVISS VAPS prototype was therefore extensively enhanced to allow the
empirical investigation of different interface and sensor characteristics on search and
detection capability under different environmental conditions. Included in this upgrade
was a Scenario Generation Environment (SGE) that provided user-friendly capability
for generating scenarios. Nonetheless, despite the increased versatility of the prototype
the requirements of a specific experimental design required that LUA scripting
(www.lua.org) be used to make additional modifications to the software. While further
development drastically expanded the LUA scripting capabilities, the SGE was not
similarly extended and some of its scenario-generation capabilities became
incompatible with the prototype. Thus LUA scripting in now the primary mode of
control of the prototype.

The prototype HMI was then ported to run on Microsoft Windows XP, and required
replacing the VAPS and SGI Performer™ with equivalent functionality using the
OpenSceneGraph open source graphics library. The robustness and traceability of the

iv DRDC Atlantic CR 2006-280

system were also significantly improved. The latest development phase added
important tracking and motion-related functionality (amongst other things) to this new
system and gave it a new name AIMSsim.

Significance
The experimental research platform at DRDC provides a means for ensuring that the
user is an integral part of the design process and optimal design from the user’s
perspective is obtained. As technology advances and systems, like the AIMS, become
more complex for an operator to use, user-machine system design becomes more
critical and challenging. The continued development and upgrade of the AIMSsim
research platform provides the experimenter with an appropriate level of simulation
detail to conduct human peformance analyses which in turn delivers up-to-date
knowledge and advice on the design of sensor surveillance systems to the military
stakeholder. A System Manual (Schoenbaum, 2007a) describing the architecture and
capabilities, and a Final Report (Schoenbaum, 2007b) that summarizes the work
performed and makes recommendation for future work, are also associated with this
document.

DRDC Atlantic CR 2006-280 v

Sommaire

Introduction
Le manuel fournit les instructions sur l’installation et l’utilisation du logiciel
développé pour appuyer la recherche empirique d’un interface-utilisateur de
simulation pour le système AIMS - système multicapteur intégré de pointe pour la
surveillance (anciennement connu sous l’appellation ELVISS - système perfectionné
de surveillance à intensification de lumière visible et à infrarouge).

Système multicapteur de surveillance, le AIMS est en cours de développement pour
améliorer les capacités de recherche et sauvetage (SAR) et de la patrouille maritime.
Le système AIMS optimisera les capacités de SAR plus particulièrement la nuit et dans
de mauvaises conditions météorologiques. D’autres versions du système AIMS avaient
déjà été développées, soit le système laser aéroporté perfectionné de détection et
d’observation (ALBEDOS) et le système perfectionné de surveillance à intensification
de lumière visible et à infrarouge (ELVISS). Le système AIMS est supérieur à ses
prédécesseurs grâce à l’intégration de quatre capteurs dans un seul cardan. Une
plateforme de recherche qui simule l’utilisation et la commande de l’interface de
capteur aéroporté a été élaborée par Recherche et Développement pour la défense
Canada (RDDC) afin d’appuyer l’évaluation des principes de conception et pour
aborder les questions relatives au rendement humain lié à l’utilisation du système
AIMS et de systèmes d’imagerie électro-optique semblables.

Afin de s’assurer que l’opérateur SAR est capable d’utiliser adéquatement le système,
et ce avec une formation minimale, un prototype d’interface homme-machine (HMI) a
été élaboré pour évaluer les principes de conception. Le prototype VAPS HMI
(ELVISS), développé pour la plateforme de Silicon Graphics, Inc. (SGI), a fourni une
méthode économique pour évaluer l’impact sur le rendement de l’opérateur des
caractéristiques de conception des systèmes de capteurs jumelés. Le système a
démontré que ses capacités étaient limitées et que son architecture n’avait pas été
conçue pour permettre une recherche systématique de l’utilité du système proposé dans
différentes conditions ou pour manipuler les caractéristiques des capteurs et de
l’interface.

Résultats
Le prototype ELVISS VAPS a donc été grandement amélioré pour permettre la
recherche expérimentale sur des interfaces différentes et des caractéristiques de
capteurs pour la recherche et la détection dans diverses conditions environnementales.
Cette version améliorée incluait également un environnement de génération de
scénarios (Scenario Generation Environment [SGE]) qui fournissait une capacité
conviviale pour générer des scénarios. Finalement, malgré la polyvalence améliorée du
prototype, les exigences d’une conception expérimentale spécifique demandaient
qu’un script LUA (www.lua.org) soit utilisé pour apporter des modifications
supplémentaires au logiciel. Tandis que des nouveaux progrès élargissaient les
capacités de script LUA, le SGE n’évoluait pas de la même façon et quelques-unes de
ces capacités de scénarisation sont même devenues incompatibles avec le prototype.

vi DRDC Atlantic CR 2006-280

C’est pourquoi le script LUA est maintenant le principal mode de contrôle du
prototype.

Le prototype HMI a alors été adapté pour fonctionner avec Microsoft Windows XP, et
a demandé le remplacement de VAPS (Virtual Applications Builder) et de SGI
Performer™ par une fonctionnalité équivalente utilisant la graphithèque de source
ouverte OpenSceneGraph. La robustesse et la traçabilité du système ont également été
améliorées de façon significative. Le dernière phase de développement a, entres autres,
munie le système d’une importante fonction de localisation et d’une fonction relative
au mouvement. Ces ajouts lui ont valu une nouvelle appellation, AIMSsim.

Portée
La plateforme de recherche expérimentale à RDDC a fourni des moyens pour s’assurer
que l’utilisateur fait partie du processus de conception et que la perspective de ce
dernier sur la conception optimale est connue. Tout comme la technologie, les
systèmes comme AIMS se perfectionnent et deviennent de plus en plus complexes à
utiliser pour un opérateur; la conception du système utilisateur-machine devient de
plus en plus important et impose de nouveaux défis. Le développement continu et la
mise à niveau de la plateforme de recherche AIMSsim procurent à l’expérimentateur
assez de détail sur la simulation pour effectuer des analyses sur le rendement humain
qui, à leurs tours, fournissent aux intervenants militaires une connaissance actuelle et
des recommandations sur la conception de systèmes de capteurs de surveillance. Un
manuel de système (Schoenbaum, 2007a) décrivant l’architecture et les capacités du
système et un rapport final (Schoenbaum, 2007b) résumant les travaux effectués et
faisant des recommandations pour de futures recherches, sont également liés au
présent document.

DRDC Atlantic CR 2006-280 vii

Contributors

Various 1999 – Apr 2002 CMC Electronics, The HFE Group,
DRDC Toronto

Amanda Renner May – Aug 2002
Jan – Apr 2003

DRDC Toronto

Lisa Rehak May – Aug 2003 DRDC Toronto
Alice Malisia Sep – Dec 2003 DRDC Toronto
Jennifer Jeon Jan – Apr 2004 DRDC Toronto
Michael Perlin May 2004 – Jan 2005 CMC Electronics
Oliver Schoenborn Feb – Mar 2005 Greenley & Associates
Oliver Schoenborn, Bassem
Mikhael

Mar – Oct 2005 Greenley & Associates

Oliver Schoenborn Dec 2005 – Jul 2006 CAE Professional Services

viii DRDC Atlantic CR 2006-280

Foreword

The first version of this document was written by the HFE Group in Ottawa. Since then, many
contributors have modified and added to its content. This version of the document includes
new sections and content that better reflects the current operation of the AIMSsim HMI
Prototype. The HFE group is no longer responsible for the content of this document, and it did
not participate in the latest modifications.

DRDC Atlantic CR 2006-280 ix

Table of contents

Abstract.. i

Executive summary ... iii

Sommaire.. v

Table of contents ... ix

List of figures .. xi

List of tables ... xii

1 Introduction ... 1
1.1 General ... 1
1.2 Background .. 1
1.3 Aim... 2
1.4 Objectives ... 2
1.5 Report Outline .. 2

2 Installation ... 3
2.1 General ... 3
2.2 Before You Begin... 3
2.3 Installing the AIMSsim Software ... 3

3 Experiment Development and Execution Process... 5
3.1 Experiment Simulation (ExS) scripts ... 6
3.2 Programmable Finite State Machine .. 9

4 Common Experiment Tasks .. 13
4.1 Starting and Exiting the AIMSsim HMI Prototype .. 13

4.1.1 Initial View.. 13
4.1.2 Controls ... 14

4.2 Common experiment tasks ... 14
4.2.1 Wait to start ... 14
4.2.2 Wait to exit .. 15
4.2.3 Show Operator screen ... 16
4.2.4 Camera motion or tracking.. 17
4.2.5 LOS and Isect .. 18
4.2.6 Timing ... 18
4.2.7 Do a task at every time step... 19
4.2.8 Events .. 19
4.2.9 Aircraft motion .. 20
4.2.10 Targets ... 20

x DRDC Atlantic CR 2006-280

4.2.11 Path planning... 21
4.2.12 Save data to a file .. 24
4.2.13 Logging ... 25
4.2.14 Capture display screen... 25

4.3 Example use ... 26

References .. 28

List of symbols/abbreviations/acronyms/initialisms .. 29

Annex A. Exported AIMSsim Functions and Variables ... 30
A.1 Exported Functions... 30
A.2 Exported Variables ... 33

Annex B. AIMSsim System Events and Messages .. 37
B.1 System Events .. 37
B.2 Possible Messages to SimDisplay with SendMessage() 38

Annex C. AIMSsim Target Object Types .. 40

Annex D. Converting .flt files to .ive.. 42

Annex E. AIMSsim Scenario Generation Environment... 43
E.1 Introduction .. 43
E.2 Starting and Exiting the SGE ... 44
E.3 A quick look at the SGE... 44
E.4 The SGE Interface .. 45
E.5 Using the AIMSsim SGE ... 45

1. Defining a Scenario Landscape (Terrain).. 46
2. Using the Moving Map Display .. 46
3. Manipulating Targets .. 47
4. Manipulating the Aircraft Flight Path ... 51
5. Manipulating Sensors .. 58
6. Manipulating the Map ... 61
7. Manipulating the Environment.. 62
8. Manipulating Additional Scenario Settings....................................... 63
9. Altitude Profile Display... 64
10. The Scenario Summary Area... 65
11. Managing Your Projects.. 65

E.6 Viewing a Specific Target Object .. 65
E.7 Scenario Definition Files.. 65

1. Configuration File ... 66
2. Target Mapping File .. 70

DRDC Atlantic CR 2006-280 xi

List of figures

Figure 1: AIMS environment variables defined ...4
Figure 2. Example AIMSsim ExS initialization script ...8
Figure 3. Possible FSM for example experiment ...11
Figure 4. Example FSM..11
Figure 5. AIMSsim display in “INIT” state..14
Figure 6. Available AIMSsim "Press Start" screen ..15
Figure 7. Available AIMSsim "Exit" screen ..16
Figure 8. Available AIMSsim "Operator" screen...17
Figure 9. Adding a path a second time to a vehicle..22
Figure 10. Adding a loop between two copies of a straight path..23
Figure 11. AIMSsim experiment development process when it involves the SGE..................44
Figure 12. SGE Interface ..45
Figure 13. MMD Toolbar Functions ..47
Figure 14. Target Manipulation Interface...47
Figure 15. Target View Mode ..50
Figure 16. User Defined Flight Path Manipulation Interface ...51
Figure 17. Creeping Line Ahead Search Pattern ..53
Figure 18. Creeping Line Ahead Flight Pattern Manipulation Interface54
Figure 19. Creeping Line Ahead Parameters..55
Figure 20. Expanding Square Search Pattern ...56
Figure 21. Expanding Square Flight Pattern Manipulation Interface.......................................57
Figure 22. Sensor Manipulation Interface ..59
Figure 23. Miscellaneous Settings Manipulation Interface ..63
Figure 24. Altitude Profile Display ..65

xii DRDC Atlantic CR 2006-280

List of tables

Table 1. Example AIMSsim experiment ..10
Table 2. Exported functions and their parameters ..30
Table 3. Exported variables, and their type or possible values...33
Table 4. System events and their trigger condition ..37
Table 5. Possible messages to simDisplay using SendMessage() ..38
Table 6. Target Object Types ...40
Table 7. Target Parameters...48
Table 8. User Defined Waypoint Parameters ...52
Table 9. Creeping Line Ahead Parameters ...54
Table 10. Expanding Square Parameters ..57
Table 11. Sensor Parameters ..59
Table 12. Environment Parameters ..62
Table 13. Miscellaneous Parameters ..63
Table 14. Configuration File Specification ..67

DRDC Atlantic CR 2006-280 1

1 Introduction

1.1 General
The DRDC Valcartier has been developing a flyable prototype of an Advanced
Integrated Multi-sensor Surveillance (AIMS) system (formerly known as the
Enhanced Low-Light-Level Visible and Infrared Surveillance System – ELVISS).
DRDC has been contracting out the development, and subsequent enhancement of the
capabilities, of the AIMS human-machine interface (HMI) prototype, to allow the
empirical investigation of different interface and sensor characteristics on search and
detection capability under different simulated environmental conditions.

1.2 Background
DND has identified a requirement to enhance the capabilities of Search And Rescue
(SAR) operators to conduct operations at night and under degraded weather
conditions. To this end, the Defence Research Establishment Valcartier (DREV) is
developing a multi-sensor system composed of an Active Imaging System (the
Airborne Laser-Based Enhanced Detection and Observation System -- ALBEDOS)
and a thermal Infrared (IR) imaging system. By coordinating the use of a pulsed laser
illuminator and AGTV camera, the AGTV component of AIMS provides effective
imaging in the absence of ambient light. In addition, the active range gate allows the
AGTV system to penetrate meteorological phenomena such as fog, snow and rain
much more effectively than a FLIR camera. The FLIR camera is a passive thermal
imaging system that produces an image based on temperature variation by detecting
mid-infrared and far-infrared radiation. Both sensors are bore sighted and are
packaged in a gimballed “ball” that is mounted on the exterior of an aircraft or vehicle.
The use of gyros inside the ball allows the camera within to maintain its orientation in
the Earth frame of reference, without being affected by roll, pitch and yaw changes in
the supporting aircraft or vehicle.

In order to ensure that a SAR operator would be able to use the system effectively and
with a minimal amount of training, a prototype HMI was developed to evaluate design
concepts. The VAPS HMI prototype (ELVISS), developed for the Silicon Graphics,
Inc.’s (SGI) platform, provided a cost effective method for evaluating the impact of
design characteristics of dual sensor systems on operator performance. However the
capability was limited and the architecture was not designed to support systematic
investigation of the usefulness of the proposed system under different conditions or to
manipulate the sensor and interface characteristics.

The ELVISS VAPS prototype was therefore extensively enhanced to allow the
empirical investigation of different interface and sensor characteristics on search and
detection capability under different environmental conditions. Included in this upgrade
was a Scenario Generation Environment (SGE) that provided user-friendly capability
for generating scenarios. Nonetheless, despite the increased versatility of the prototype
the requirements of a specific experimental design required that LUA scripting be used
to make additional modifications to the software. While further development

2 DRDC Atlantic CR 2006-280

drastically expanded the LUA scripting capabilities, the SGE was not similarly
extended and some of its scenario-generation capabilities became incompatible with
the prototype. Thus LUA scripting in now the primary mode of control of the
prototype.

The prototype HMI was then ported to run on Microsoft Windows XP, and required
replacing the VAPS and SGI Performer™ with equivalent functionality using the
OpenSceneGraph open source graphics library. The robustness and traceability of the
system were also significantly improved. The latest development phase added
important tracking and motion-related functionality (amongst other things) to this new
system and gave it a new name AIMSsim.

1.3 Aim
The aim of this report is to provide instructions for installation and use of software
developed to support empirical investigation of a simulated user interface for the
AIMS Human Machine Interface (HMI).

1.4 Objectives
The specific objectives of this report are to:

a. Describe the process of installing AIMSsim;

b. Provide instructions on the use of AIMSsim software

1.5 Report Outline
The report is structured as follows:

1. Section One describes the background, aim and scope of this document;

2. Section Two explains the process of installing AIMSsim;

3. Section Three documents the experiment development and execution process
(EDEP) to follow when using AIMSsim;

4. Section Four documents the use of the main component of AIMSsim; and

5. Various annexes document the scripting functions and predefined variables,
predefined system events and messages, target object types, OpenFlight file
conversion to other formats via OpenSceneGraph, and the AIMS Scenario
Generation Environment (SGE).

DRDC Atlantic CR 2006-280 3

2 Installation

2.1 General
The following subsections describe the process of installing the AIMSsim components
and supporting software. The instructions in this section assume a basic working
knowledge of the Microsoft Windows operating system and understanding of the
AIMSsim System Manual, especially with regards to simControl and simDisplay. The
instructions also assume that you have logged onto the system and have read and write
privileges for the target directory into which you intend to install the AIMSsim
software.

2.2 Before You Begin
Before you begin installing AIMSsim:

• Ensure that the system requirements defined in AIMSsim System Manual have
been met.

• Ensure that you have adequate permissions to write data to the target directories
into which you intend to install the software.

• Ensure that you have the required amount of hard-disk space before installing, i.e.
approximately 1G, due to the large size of the included terrain databases.

2.3 Installing the AIMSsim Software
1. Extract the contents of the AIMS_SW_*.zip file you obtained to a location of your

choice. This will create a folder containing: the binaries for the HMI prototype and
SGE software with supporting DLLs, subfolders for some experimentation scripts,
and a copy of the System and User manuals. We will refer to this folder as
AIMS_HOME.

2. (Optional) Create a shortcut to the SGE executable on your desktop

3. Extract the contents of the AIMS_DB_*.zip file you obtained to a location of your

choice. This is the visualization database (referred to in this document as
AIMS_DB).

4. Connect the FlyPanel to the computer, according to the FlyPanel manual. This

basically consists in connecting one FlyPanel cable to one of your PC’s serial ports
(the same as specified by FB_PORT below), and the FlyPanel’s power cable to a
power supply.

5. Define the following AIMSsim environment variables (see Figure 1):

a. AIMS_DATA (required): points to the AIMS_DB folder.
b. AIMS_DPI (required): a space-separated pair of values that define the

horizontal and vertical dots-per-inch of your monitor. This is necessary for

4 DRDC Atlantic CR 2006-280

an accurate scaling of the Moving Map Display. E.g. a 21” monitor has a
screen 15.75” x 11.5”. At a resolution of 1600 by 1200, this would imply
an AIMS_DPI equal to “101.587 104.348”.

c. AIMS_SCEN (required only if you want to use the SGE): points to a folder
of your choice, where the SGE will save and load project files. Note that
you can easily override this from the SGE through its File Browser.

d. FB_PORT (required only if default inadequate): defaults to “COM1”; set it
to some other appropriate value (e.g. “COM2” or “COM3”) depending on
which serial port your FlyPanel is connected to.

Figure 1: AIMS environment variables defined

DRDC Atlantic CR 2006-280 5

3 Experiment Development and Execution Process

The instructions in this section assume a basic understanding of the AIMSsim System
Manual, especially with regards to simControl and simDisplay. This section also
requires a basic understanding of scripting. Knowledge of LUA scripting is not
necessary but will be useful.

AIMSsim represents virtual prototypes of proposed AIMS system interfaces. A virtual
interface allows you to test and evaluate the impact of different interface and sensor
characteristics on search and detection tasks by simulating, in real time, “experiments”
(also known as “scenarios”) described by scenario text files, and by allowing you to
collect data on how well the system was operated in accomplishing the goals set out by
the scenario.

Usage of AIMSsim involves several steps:

1. Develop experiment:

a. Design your experiment (conceptually)

b. Convert it to a Finite State Machine (FSM), diagrammatically

c. Determine which scripts are available for re-use by looking at previous
experiments, and the LuaUtils folder in AIMS_HOME

d. Create a directory, in AIMS_HOME, for your new experiment

e. Create the LUA initialization script for your experiment, or copy it from
another experiment and edit it

f. Create the remaining LUA scripts for the FSM and other tasks
(designation, etc), or copy from existing ones and edit

g. Run simControl to test and debug the experiment; this involves looking at
the visual display for proper sequence of screens, and proper changes of
states and settings; as well as looking for any messages in the DOS shell
or in the log files sim*_log.txt that get created by each process in
AIMS_HOME, and looking at any collected data for correctness

h. Edit the experiment’s LUA scripts until experiment works as required

2. Execute experiment:

a. Run simControl to execute the experiment and collect data

b. Analyze data

Steps 1d to 1f result in a set of LUA scripts, referred to as your Experiment Simulation
(ExS) Scripts.

In older generations of AIMSsim, steps 1d to 1f did not involve LUA scripts but plain
text files with value settings. These value files could be created from the AIMS
Scenario Generation Environment (SGE) and read by AIMSsim. Since the scripting
capabilities were added to AIMSsim, only the flight plan and the targets files created
by the SGE can be read into simControl. Settings saved by the SGE in the SGE project

6 DRDC Atlantic CR 2006-280

configuration file (such as environmental conditions etc -- see the AIMSsim System
Manual) can no longer be read by simControl. Due to the loose coupling between the
simControl and the SGE, use of the SGE is described in detail in Annex E.

3.1 Experiment Simulation (ExS) scripts
LUA scripting was added to the AIMS HMI Prototype as the means of describing
experiments. LUA is a relatively simple language that is interpreted at run time and
uses a C like syntax. For official information about LUA, visit www.lua.org.

While LUA is easy to use, it is at the same time a very powerful language. One major
departure from C and many other languages is that variables do not have to be
declared before they are used. This eases development, but makes debugging a little
more difficult. Be sure that you are spelling variables correctly. Also, it is suggested
that each script contain a comment in the first few lines of the script, describing all
global variables that are assumed to exist when the script is called.

One LUA script is required to initialize the AIMSsim system, and one LUA script is
possible per state transition in the FSM.

All standard LUA library functions are available for use in your experiment scripts. In
addition to these standard functions, there are a large number of AIMSsim functions
and settings that have been made available through the scripting interface. These are
the functions that will be the most useful for implementing experiments. See Annex A
for a table of all exported AIMSsim functions available to your scripts.

In addition, there are a few AIMSsim facilities that have been exposed to aid in
experiment implementation:

• User Timer: a timer exists to allow response times to be captured through scripts.
It is up to the experimenter to ensure that this timer is reset and read at the
appropriate time, via the ResetUserTimer() and GetUserElapsedTime() functions.
Note that LUA provides timing functions natively, however they provide only 1
second resolution.

• User Variables (deprecated): they exist in 3 forms, integers, integer arrays, and
float arrays. User variables are uniquely identified by their names, and are
created as the user sets them. They were originally provided as a safe way to
share data between scripts, as they differ from native LUA global variables in two
ways:

o How they are accessed: user variables are accessed via the Set*() and Get*()
AIMSsim functions as quoted arguments, whereas LUA variables appear
directly LUA script expressions, unquoted.
-- Initialization script
setInt(“hello”, 3); # User variable named “hello”
-- Some other script
hello = GetInt(“hello”); # Get its value, put in LUA variable
goodbye = hello + 2; # change LUA variable
setInt(“hello”, goodbye); # commit change to User variable

DRDC Atlantic CR 2006-280 7

o Behavior when undefined: If a script tries to access an undefined user
variable, it will get 0, whereas an undefined LUA variable is nil and will
cause an error message to be printed to the shell window.

This feature has been deprecated because it bypasses one of the fundamental
validation mechanisms available in LUA: exceptions. If a script attempts to use a
LUA native variable that is undefined, the LUA interpreter will raise an
exception, which will appear immediately in the simControl_log.txt file. An
undefined user variable appears as a zero in your scripts, which will rarely cause
any errors, let alone a meaningful error message identifying file and line where
the error occurred; if you are lucky, you may eventually notice unexpected
behavior, but this will often not be the case, and is much more difficult to
troubleshoot.

LUA variables are by default global. Variables declared in one script are available
in other scripts run during the experiment (because a single LUA virtual machine
is used). The use of the “local” qualifier on variables is encouraged as a
mechanism to minimize the number of global variables that exist during an
experiment:

This helps decrease the likelihood that a variable meant only for local use in a
script has the same name as one of your “undefined” global variables.

• Experiment execution trace: every call to exported functions and every change
to exported settings can be logged so as to get a “trace” (in programmer parlance)
of the script execution. Each trace message says what has been done, what new
value has been set etc. Very useful while developing an experiment.

Some typical tasks done in an initialization script:

• Set up AIMSsim configuration variables (FOV, map mode, etc)
• Set up some global run-time constants used by your experiment
• Define terrain database to use
• Define path plans
• Define targets and each one’s attributes
• Add path plans to targets and/or aircraft
• Define FSM
• Define run-timed and flight-timed transition events (e.g., to turn off the MMD

at specific times of the run or of the flight)
• Define scripts to be run at every time step (so-called “periodic” scripts)
• Schedule an event to transition away from the “INIT” state after initialization

script has completed

The following box shows an example AIMSsim initialization LUA script, performing
several of the above tasks. Some of these will explained in later sections.

local a = 1
local b = a+2
print(b)

8 DRDC Atlantic CR 2006-280

Trace(1)

function log(logFile, msg)
 local curout = io.output()
 io.output(logFile)
 io.write(msg, "\n")
 io.output(curout)
end

dofile("Designation/initWorld.lua")
dofile("Designation/initFSM.lua")

-- use the look-at algorithm for autotracking
autoTrackByLookat = true
autoTrackDesignatedTarget = true
userResponse2Change = {} -- empty table to store results

-- Info for saving field of view measures
fovScript = "Designation/outFOV.lua"
fovFName = "Designation/results/fov.txt"
fovFile = io.open(fovFName, "w")
if fovFile then
 AddPeriodicScript(fovScript)
else
 print("Could not open '"..fovFName.."', can't save FOV")
end

-- Open a file to save tracking measures; will use stdout if for some
-- reason file can't be opened.

trackingFName = "Designation/results/tracking.txt"
trackingFile = io.open(trackingFName,"w")
if not trackingFile then
 print("Can't open file '"..trackingFName.."', can't save tracking measures, using stdout
instead")
end

-- Define the "save" function to save tracking measurements, needed by tracking script
function saveTrackingMeasure(targetDistance, targetRelSpeed, targetLOSH, targetLOSP)
 msg = string.format("%.2f %.2f %.2f %.2f %.2f\n", GetRuntime(),
 targetDistance, targetRelSpeed, targetLOSH, targetLOSP)
 if trackingFile then
 trackingFile:write(msg)
 else
 print(msg)
 end
end

-- and the comment function for outputting comments to file
function commentTrackingMeasure(comment)
 if trackingFile then
 trackingFile:write(comment)
 end
end

-- We're done, notify system that we can switch to next state
GenerateEvent("EVENT:initDone")

Figure 2. Example AIMSsim ExS initialization script

DRDC Atlantic CR 2006-280 9

3.2 Programmable Finite State Machine
The flow of an experiment can described using a finite state machine (FSM). In order
to provide the capability to run the largest number of possible experiments, the
scriptable architecture allows the state machine that describes an experiment to be set
at initialization time through scripts. This allows for any ordering of screens and
behavior to be created. AIMSsim should be able to behave according to any desired
experimental flow using the facilities provided. It should be noted, however, that care
must be taken in describing the FSM of an experiment, since there is no facility to
ensure that the FSM described makes sense.

A FSM can be viewed as a graph with the nodes representing states, and the arcs
representing state transitions (see the System Manual). By describing all the
transitions, the FSM can be fully described. Transitions are described using four
fields: the current state, the next state, the triggering event, and the action to take. This
is done via the exported AddTransition() function, normally during the initialization
script. Only one transition <state, event> pair is possible.

The states can be named as desired by the experimenter with the following two
exceptions: the initial state is always called “STATE:INIT”, and the final state is
always called “STATE:EXIT”. In addition, all states must start with the name
“STATE:”. It is up to the experimenter to provide a transition from the “INIT” state. A
good way of doing this is by having the last line of the initialization script call the
GenerateEvent() function with the proper event name defined in the experiment’s
FSM. It is also up to the experimenter to provide for a transition into the “EXIT” state
that will cause the system to exit.

State transitions within your experiment’s FSM are executed in response to events.
Each transition causes a corresponding LUA script to be run, if one was specified in
the initialization script. There are a number of ways for events to be triggered:

1. System events are automatically triggered by the system under specific
conditions. These events have set names and are described in Annex B. E.g.,
when the exit screen is shown with the exit button, an
EVENT:EXIT_PRESSED event is generated when the user presses the button.

2. Timed events can be added using the AddTimedEvent() and
AddFlightTimedEvent() functions. Timed event names are chosen by the
experimenter. A timed event occurs at a specific runtime or flight time, and
causes an event to be generated.

3. Generic events can be generated within scripts using the GenerateEvent()
function. Generic events can be named as desired by the experimenter, except
for the constraint that all events must start with the word “EVENT:”.

The following table shows an example experiment, and associated states and events.
System State names and System Event names are in italics, all others are arbitrary
names and specific to this simplified example:

10 DRDC Atlantic CR 2006-280

Table 1. Example AIMSsim experiment

 Experiment stage State Name LUA script
to execute
on entry to
state

Transition event

1. Initialize STATE:INIT initialization
script

EVENT:DONE_INIT

2. Show the startup screen, wait
for setup complete: operator
ready, database loaded, etc.

STATE:SHOW_START toStartup.lua Press “Start”
(EVENT:START_PRES
SED)

3. Show operator interface, but no
operation allowed; the aircraft
flies along prescribed flight
path; wait for timed event or
end of flight path

STATE:FLYING toFlying.lua Timed event
(EVENT:SEARCH_TI
ME)
or
flight path done
(EVENT:END_OF_FP)

4. At predefined points in time,
freeze aircraft, hide map, add a
target to landscape, and allow
operator to use joystick
controls to move sensor
cameras until target found; wait
for them to press "button 9" on
their control

STATE:SEARCHING toSearching.lua Button 9 clicked
(EVENT:B9_PRESSED
)

5. Take a snapshot of current
camera view and save it

STATE:CAPTURE_IMA
GE

toCapture.lua Image saved
(EVENT:IMAGE_CAPT
URED)

6. Resume flight path and
reactivate map; ie aircraft starts
moving again, but operator
can't control anything; prepare
for next target with timed
event,
OR (item #8)

STATE:FLYING toFlying.lua Timed event
(EVENT:SEARCH_TI
ME)

7. No more targets: continue
flying until flight path
completed

 Flight path completed
(EVENT:END_OF_FP)

8. Flight path completed. Save
data, close files, etc.

STATE:EXITING toExit.lua

9. Exit program STATE:EXIT

The corresponding finite state diagram would be as shown in Figure 3.

DRDC Atlantic CR 2006-280 11

SHOW_START

FLYING

SEARCHING

EXITING

CAPTURE
_IMAGE

DONE_INIT

END_OF_FP

SEARCH_TIME

B9_PRESSED

IMAGE_CAPTURED

START_PRESSED

EXIT_PRESSED

INIT

EXIT

Figure 3. Possible FSM for example experiment

The LUA script stateMachine.lua, executed by the example initialization script
in

Figure 2, is shown in Figure 4. This shows how the recording of a specific response by
the user (LOC#_PRESSED), one of 8 choices, uses a transition script specific to the
response. It is up to the script to make sure that the system returns to the FLYING state
(e.g., by itself calling dofile(“toFlying.lua”); however the FSM could be
modified to use an event instead).

AddTransition("STATE:INIT", "STATE:STARTUP",
"EVENT:DONE_INIT", "./SC/generic/toStartup.lua")

AddTransition("STATE:STARTUP"," STATE:FLYING",
 “EVENT:START_PRESSED", "./SC/generic/toFlying.lua")
AddTransition("STATE:FLYING"," STATE:EXITS",

"EVENT:END_OF_FP", "./SC/generic/toExit.lua")
AddTransition("STATE:FLYING"," STATE:SEARCH",

“EVENT:SEARCH_TIME", "./SC/generic/toSearch.lua")
AddTransition("STATE:SEARCH"," STATE:CAPTURE",

"EVENT:B9_PRESSED", "./SC/generic/toCapture.lua")
AddTransition("STATE:CAPTURE","FLYING",

"EVENT:IMAGE_CAPTURED", "./SC/generic/toQuestion.lua")
AddTransition("STATE:EXITS","STATE:EXIT","EVENT:EXIT_PRESSED", "")

Figure 4. Example FSM

Note however that for a non-trivial experiment, there can be many different FSM
representations. Your choice should be based on clarity and modularity, rather than
brevity or ease. The extra effort will pay off when debugging and extending your
experiment.

12 DRDC Atlantic CR 2006-280

The following list outlines some of the tasks that could take place in the above
example.

• toStartup.lua:

o tell simDisplay to show startup screen
o create “target event number” to count how many targets have been found

• toFlying.lua:
o reset user time to 0 every time entering this state (as if each waypoint was

the beginning of the simulation)
o tell simDisplay to update the display, because targets are removed in

other scripts (like toCapture.lua)
o disable joystick input and resume the aircraft motion along flight path
o set sensor heading since defaults to 0 pitch, or if not first time run,

operator has likely changed it while search for target
o start updating sensor heading periodically so it follows aircraft direction
o increase "target event" number
o tell simDisplay to switch to "operational" screen

• toSearch.lua:
o clear the targets set (removes all targets from display)
o stop all ongoing data collection
o enable joystick input
o pause flight path
o play sound (e.g. to alert operator)
o get desired heading and pitch of target, using target and bearing table
o add a target there and tell simDisplay to update its scene graph
o reset user timer, to time how long it takes operator to find the target that

was just placed
o tell AIMSsim to run streamLog.lua every time step during search, to

capture sensor positions to file, e.g. for debugging
• toCapture.lua:

o Button 9 has been pressed, so operator has made decision: stop script and
clear target(s)

o get time take for search/find
o tell simDisplay to capture current camera view (of which sensor?); once

captured, simDisplay generates IMAGE_CAPTURED event
automatically

• toQuestion.lua:
o camera view has been capture so reset user timer to time how long taken

to answer upcoming question
o get the question type for current "target event" number
o tell simDisplay to display the question string

• toExit.lua:
o tell simDisplay to exit too

DRDC Atlantic CR 2006-280 13

4 Common Experiment Tasks

4.1 Starting and Exiting the AIMSsim HMI Prototype
AIMSsim must be started at a DOS command line (though a desktop shortcut could be
created). Command line parameters are options that are provided to simControl to
specify some of its run time parameters. In order for the HMI Prototype to function
correctly, one command line parameter is required for the initialization script to use,
and a number of optional parameters are possible. The basic steps for running the HMI
Prototype:

• Open a command shell, e.g. by doing Start->Run…->”cmd”
• Cd to the folder containing the AIMSsim binaries (AIMS_HOME)
• Run

simControl -i initscript.lua -p subject_number -t trial_number

Where:
• initscript.lua is the filename of the AIMSsim LUA initialization script,

relative to the current directory; e.g. TEST/main.lua. Note that path must be
formatted in universal form rather than DOS form, i.e. use forward slashes as
folder separators.

• subject_number and trial_number are optional numeric parameters used to
identify and name the data collection files that will be created by AIMSsim.
If subject_number and trial_number are not provided, AIMSsim will assign
default values of 0 and 0, respectively.

Most environment variables that were available in previous generations of AIMSsim
have been removed or replaced with corresponding AIMSsim variables exported to the
the LUA scripting engine. Refer to AIMSsim System Manual for a list of all
environment variables currently supported, and to section 2.3 of the current manual for
example settings of some of them.

AIMSsim will give best results when it is run covering the entire screen of the
monitor. A useful key combination is ALT-tab, which cycles between open windows
of the desktop.

4.1.1 Initial View
Once started, simControl spawns off two other processes, namely simInputs and
simDisplay. The former is to read the controls box (e.g. a FlyBox™), the latter is the
display side of the system, as described in the AIMSsim System Manual. SimControl
then enters the “INIT” state, and loops forever, waiting for events. It is up to the
initialization script to transition simControl out of the “INIT” state, but it is up to one
of the FSM scripts to transition it to the “EXIT” state according to the desired flow of
the experiment. SimDisplay will show an essentially empty screen (see Figure 5).

14 DRDC Atlantic CR 2006-280

Figure 5. AIMSsim display in “INIT” state

The capabilities of AIMSsim (i.e. simControl and simDisplay together) between the
“INIT” and “EXIT” states are entirely determined by the AIMSsim and LUA functions
and variables used in the LUA scripts.

4.1.2 Controls
There are two types of controls available to the experiment: analog and digital. The
analog controls are continuous variables that vary between -1 and 1. The association
between a given analog control and its effect in AIMSsim is hardcoded, though in
some cases it can be disabled:

• There is a joystick to rotate the camera’s view location. This is operational only
when the exported orientationControl variable is ORIENT_CTL_OPERATOR.

• There is a zoom in/zoom out function that uses the levers for continuous zoom:
the left lever controls the top view (AGTV) and the right lever controls the
bottom view (FLIR).

All digital controls are either on or off and generate an event when pressed or released.
It is up to the experiment designer to decide how to make use of each (or any) digital
control in their FSM. All digital control event names have the form
EVENT:CONTROL_PRESSED and EVENT:CONTROL_RELEASED, where
CONTROL is described in Table 4.

4.2 Common experiment tasks
Some tasks or activities that you will likely perform in your LUA scripts may not be
obvious from the exported AIMSsim functions and variables shown in Annex A. A
few of them are described here. Also, the available screens are documented here. A
good way of acquiring a good understanding of how to use AIMSsim is by looking at
some of the sample scripts in the TEST, LuaUtils and Designation folders.

4.2.1 Wait to start
If you want the user to have to press “Start” before some stage of the experiment, a
“Press Start” screen is available, shown in Figure 6. This can be used to start the
experiment after everything is loaded and initialized, or between two phases of the

DRDC Atlantic CR 2006-280 15

experiment, etc. Simply send a message to simDisplay with
SendMessage(“toStartup”). When the operator clicks “Start”, the
EVENT:START_PRESSED event is generated.

Figure 6. Available AIMSsim "Press Start" screen

4.2.2 Wait to exit
An exit screen waiting for the user to press the “Exit” button is available, see Figure 7.
This can help the operator know that the programming is terminating normally. When
the operator presses “Exit”, the EVENT:EXIT_PRESSED system event is generated.

16 DRDC Atlantic CR 2006-280

Figure 7. Available AIMSsim "Exit" screen

4.2.3 Show Operator screen
The screen that shows the sensor camera views as well as the map view is called the
“Operator” screen. Which views are active, as well as various sensor and map
characteristics which will affect how things are displayed, can be set via the many
exported AIMSsim variables shown in Annex A.

This screen is activated by a SendMessage(“toOperational”). This screen typically
involves a substantial amount of visual detail, such that activating it may take a long
time (many seconds). During this time, the simControl is still running, but simDisplay
doesn’t respond or update the screen. This can be somewhat confusing to the user but
it is up to the experimenter to warn them.

Whenever the Operator screen becomes visible, a
EVENT:OPERATIONAL_UPDATED event is generated, for the benefit of your ExS
scripts. This could be useful, e.g., to have the aircraft start its motion on its flight path
only once the Operator screen is visible.

DRDC Atlantic CR 2006-280 17

Figure 8. Available AIMSsim "Operator" screen

4.2.4 Camera motion or tracking
The default behavior of the system is to mimic the behavior of the camera gimbal of
the real system, which is to leave the camera “free” to maintain its orientation in space
regardless of the aircraft orientation, and respond to operator input. This is the
ORIENT_CTL_OPERATOR mode of the setting orientationControl.

If the script should take over the camera orientation, e.g. for “ground track mode”
(autotracking), the orientation control must be changed to ORIENT_CTL_CPU. Only
then your scripts can call SetSensorOrientation(), typically via a periodic script added
with AddPeriodicScript(“scriptname”).

The SetSensorOrientation() function specifies the sensor orientation via heading and
pitch angles. When autotracking a faraway target while zoomed in, small numerical
errors in the view matrix created from the heading and pitch can lead to visible amount
of “jitter” for the target being tracked. This is realistic since in a real system, the
gimbal motors would be controlled similarly. However, should you desire to remove
any form of jitter, a third orientation control mode is available:
ORIENT_CTL_LOOKAT. This generates the view matrix by telling simDisplay which
point in space to look at (via the SetDisplayLookAtPoint() function), almost
completely removing any jitter.

18 DRDC Atlantic CR 2006-280

4.2.5 LOS and Isect
The Line-Of-Sight information is computed by simDisplay at every time step and is
made accessible to the ExS scripts via GetLOSPosition(). Because the scripts are run
from simControl, which runs asynchronously in parallel with simDisplay,
GetLOSPosition() gives the latest LOS accessible to simControl. The simDisplay may
have in the meantime changed the view. Note however that this kind of lag should
only lead to visible effects if the two processes are looping at very different rates (e.g.,
simControl is able to do only 5 time steps per second due to massive amount of data
saving in the ExS scripts, while simDisplay is able to loop 60 times per second).

An alternative is to get simControl to compute the LOS value via
GetLOSPosition(“control”). This will produce a value that is consistent with the
physical state of the world, rather than the visual state of the world. It is likely to be
“in the near future” of the visual display. The lag ahead is typically on the order of
milliseconds, hardly worth worrying about, but can have visible effects (in terms of
decisions made by the scripts) if the two processes are looping at very different rates.

Isects are the name give to the result of getting the intersection point between a line
and a surface. An isect is said to be “invalid” if there is no such intersection. In the
context of AIMSsim, all isects are for a line starting at aircraft location, and having a
certain pitch and bearing. Isects typically don’t have a visual component and are useful
mostly to the scripts. For this reason, the default RequestIsect(bearing, pitch) get the
isect as computed by simControl.

Due to the asynchronicity of simDisplay and simControl, the isection may produce a
coordinate that lies on a surface different from what the operator is currently seeing
(e.g., the isect result may correspond to the hood of a truck on the ground, but if the
truck is moving, the simDisplay may not yet have received its new position). In the
rare case that this matters, your script can use instead RequestIsect(bearing, pitch,
“display”) to get it computed by the display. As soon as the display has the result, an
EVENT:ISECT_VALID is emitted only if a valid isect was found. However, the
asynchronicity implies that by the time your script gets run due to the event, the world
may already have been evolved by simControl. Typically the change will be small, but
there are situations where it could be noticeable.

4.2.6 Timing
There are three concepts of time in AIMSsim:

• Run time: time since the beginning of the run, in seconds. Obtained in the
experiment scripts by calling GetRuntime(). This cannot be paused or reset.

• Simulation time: time since any motion started, also in seconds. There is motion
if any of the entities is resumed via an appropriate call to one of the path plan
following functions (PathFollowing*() or AircraftPathFollowing*() or
TargetPathFollowing*()). This timer pauses when there are no moving entities.
Therefore, “pausing the simulation” requires that all entities be paused (e.g., via a
call to PathFollowingPause()). Therefore if the runtime indicates N seconds since
the beginning of the experiment, and the simulation was paused once for P1

DRDC Atlantic CR 2006-280 19

seconds and another time for P2 seconds, then the simulation time at exit will be
N – P1 – P2. Note that the simulation time is displayed by simDisplay in the top
right corner of the Operator screen. Note also that the simulation time can be reset
to 0 by calling GenerateEvent(“EVENT:RESET_SIM_TIME”).

• User time: time since the last ResetUserTimer() was called. Obtained in the
experiment scripts by calling GetUserElapsedTime(). Useful to measure the time
differences.

It is important to bear in mind that AddTimedEvent() uses the run time, whereas
AddFlightTimedEvent() uses the simulation time.

4.2.7 Do a task at every time step
If your experiment needs to perform a task at every time step, you can use
AddPeriodicScript(“scriptName”) to tell simControl to execute a script. Periodic
scripts can also be removed from the list of periodic scripts. Note that the order of
execution of periodic scripts is not guaranteed and should not be relied upon. Note also
that adding/removing a periodic script from a periodic script will see the change
activated at the next time step (so as not to corrupt the list of scripts while it is being
traversed).

4.2.8 Events
Events are the main mechanism for indicating to the application that “something has
happened”. However, events are useful only if the FSM has transitions defined: the
only way to “do something” when an event “occurs”, is to have a transition defined for
it in the FSM.

There are several ways of generating events:

• By pressing or releasing a digital control on the input device

• By clicking on a button on a dialog screen on the display

• By calling GenerateEvent(“EVENT:Name”) to generate an event of given
name

• By using AddTimedEvent() or AddFlightTimedEvent(). This will generate the
specified event at the specified time: if the event appears in the FSM, a
transition could occur. The two timed event queues can be cleared with a call
to ClearEvents().

Events that are generated during a time step are queued for processing at the next time
step, when they will be generated in the same order as they were queued.

Another form of event is specific to simDisplay: a call to SendMessage(“message”)
sends the given text to simDisplay. Note that the order of receipt of messages and
events cannot be guaranteed by simDisplay because the associated data is
communicated to simDisplay over independent channels. A simple example is

20 DRDC Atlantic CR 2006-280

UpdateDisplayedTargets(): this actually uses SendMessage(), so the message could be
received (in principle) before simDisplay’s shared memory has been updated with the
new target attributes.

4.2.9 Aircraft motion
The flight plan of the aircraft is set with the AircraftAddPath() function, which takes
as argument a path plan created with CreatePathPlan(). The AircraftAddPath()
function can be called multiple times to extend the aircraft’s flight plan (see the section
4.2.11 on path planning, for a discussion of how path plans are strung together).
Wheverever the aircraft reaches the end of the last path given to it, an
EVENT:END_OF_PATH:AIRCRAFT is generated.

The motion of the aircraft is enabled and disabled by AircraftPathFollowing*()
functions, where “*” is either Pause, Resume or Toggle.

Note that the motion can also be enabled/disabled by the global PathFollowing*()
functions, which affect all moving entities (aircraft and targets, as appropriate), or a
list of specified entities. E.g.

PathFollowingToggle()

would pause the path following of all entities that were moving, and resume all entities
that were paused. Whereas

PathFollowingToggle(“aircraft”, “target one”, “target last”)

would do this only to the specified entities (“aircraft” is the aircraft’s “name” as
known by the system – it cannot be changed). However, always use one of the
AircraftPathFollowing*() functions instead of calling PathFollowing*(“aircraft”).

4.2.10 Targets
Experiments can define targets (CreateTarget()) and clear the list of targets
(ClearTargets()) at any time. It is up to your script to decide if and when to let
simDisplay know that it should update the display with the new information, via a call
to UpdateDisplayedTargets() (without arguments).

Each target has attributes that can be modified at any time via the exported
TargetChangeAttrib() function. As with the creation/deletion functions, your
experiment scripts must tell simDisplay (when) to update itself. To save time, you can
give a sequence of target names as arguments to UpdateDisplayedTargets() so
simDisplay will update only those targets (this cannot be done when creating/deleting
targets).

The TargetChangeAttrib() function always has as first argument the target’s name, the
attribute name, and one or more parameters for the new attribute value. Some
attributes, such as the target label, require only one such parameter (the label string),
whereas others require more: the position, e.g., requires three (time step, new x, and
new y). Similarly, TargetGetAttrib() returns one, two or three values, based on the

DRDC Atlantic CR 2006-280 21

attribute type whose value is being queried. E.g. TargetGetAttrib(“target
B”, “pos”) returns a triplet x,y,z, whereas TargetGetAttrib(“target B”,
“isTarget”) returns a boolean.

Note that targets get their Z coordinate automatically clamped so the target is on the
ground, regardless of its initial Z coordinate value. Currently, flying targets are not
possible (unless there is no ground under or above them).

Targets are considered vehicles: they can have motion, just like the aircraft does:
TargetAddPath(), TargetPathFollowing*() are available and have the same function as
for aircraft, but they apply only to the target specified by name in the first function
argument.

When a target reaches the end of the most recently add path plan, the system generates
an EVENT:END_OF_PATH:SUFFIX event, where SUFFIX is by default the target
name (converted to all upper-case letters, and with all spaces converted to underscore).
This suffix can be changed via TargetSetEndOfPathEventSuffix(). E.g. given a target
named “first target”, the default “end of path” event name for that target is
EVENT:END_OF_PATH:FIRST_TARGET. After calling
TargetSetEndOfPathEventSuffix(“first target”, “Group 1”), the next “end of path”
event for that target will be named EVENT:END_OF_PATH:GROUP_1.

Note that targets can also be moved manually (e.g., if the ExS scripts define a special
path following algorithm) via the TargetChangeAttrib() function, i.e. without using
any of the path plan following functionality of the system.

4.2.11 Path planning
The concept of path following is available to both types of vehicle entities: aircraft and
targets. This allows both the aircraft and targets to follow paths independently. Path
following is supported via PathPlan objects created with CreatePathPlan(), and the
addition of such objects to the vehicles by calling the *AddPath() function on that
vehicle, at any moment during the simulation. Path plans can be sequenced to form
more complex plans.

Path plans are considered as objects by the system and are copied into the vehicles
when the *AddPath() function is called. Some important consequences of this:

• One path plan can be reused by several different vehicles, including the
aircraft

• One path plan can be used several times by the same vehicle

• Modifying a path plan after it has been added to a vehicle does not affect the
vehicle’s plan

Note however that path plan waypoints contain speed and fillet information. If either
of those must change for different vehicles (usually the case if a path plan is going to
be used for both the aircraft and some land vehicles (targets), you can copy the points
of one plan into another with PathPlanGetFirstWaypoint() and
PathPlanGetNextWaypoint(), applying any transformation desired. E.g.

22 DRDC Atlantic CR 2006-280

CreatePathPlan("target path")
x,y,z,s,r = PathPlanGetFirstWaypoint("aircraftPath")
while x ~= nil do
 PathPlanAddWaypoint("target 1 path", x,y,z,s/10,r)
 x,y,z,s,r = PathPlanGetNextWaypoint("aircraftPath")
end

creates a new path, named “target path”, identical to another (already created and
populated) path plan named “aircraftPath”, but with 1/10th the speed for every
waypoint.

Several path plan objects can be added to a vehicle, thus forming a longer, more
complex path. Path plans are automatically translated and rotated when they are added
to a vehicle that is already on a path, in such a way that the first edge of the added path
is collinear with the last edge of the previous plan. In Figure 9 is shown a simple three-
waypoint path plan (left), i.e. consisting of two edges. The right side of the figure
shows the resulting path plan for a vehicle that has been added the path object twice in
a row:

Colinear

Figure 9. Adding a path a second time to a vehicle

This affects the design of path plans. E.g., in Figure 10, adding a straight path to a
target, then adding a loop, then adding the straight path again, leads to radically
different overall path for the vehicle, depending on how the loop was designed. The
effect in A is typically not what was expected. Notice also how the path objects are
rotated to accommodate the colinearity requirement.

DRDC Atlantic CR 2006-280 23

+ =+

+ =+

A.

B.

Figure 10. Adding a loop between two copies of a straight path

Path following typically consists in the following steps:

1. Determine which paths are going to be necessary for your experiment;

2. Divide your paths into smaller, reusable “sections”, if this helps reduce the number
or complexity of paths to create;

3. Determine if and how to react to EVENT:END_OF_PATH:* events;

4. Add the necessary EVENT:END_OF_PATH:* transitions to the FSM, and the
associated transition scripts;

5. Create each path section using CreatePathPlan(“planName”), then calling
PathPlanAddWaypoint(“planName”, x, y, z, speed, fillet) for each point to add to
the plan. This can be combined with PathPlanReadWaypointsFile(“planName”,
“filename”) to add the points from a file. Either way, the points are added as-is (no
transformations are applied).

6. Add any combination of the created path plan objects to the aircraft with
AircraftAddPath(“planName”). The first plan added (and only the very
first one) sets the initial position of the aircraft to the first point of that plan. The
remaining plans added get translated and rotated so that their first segment is
collinear with the previously added plan’s last segment (see below).

7. Position targets on the terrain;

8. Add any combination of the created path plan objects to any target with
TargetAddPath(“targetName”, “planName”). The first plan to be
added gets translated to the target’s current location, the remaining plans gets

24 DRDC Atlantic CR 2006-280

translated and rotated so that their first segment is collinear with the previously
added plan’s last segment (see below).

9. Resume the appropriate vehicles (aircraft and targets), as desired.

The different default behavior for the first call to TargetAddPath() (for a given target)
compared to AircraftAddPath() shouldn’t cause you any surprise, but the following
may help clarify further:

There is only one aircraft, and it will almost always have a flight plan; so the
first plan added determines where the aircraft starts and its subsequent
motion. However, there are typically many targets, each one created with a
specified location, and typically they will not have path plans, and those that
do will often use common path object. Therefore it makes sense for path
objects to get repositioned onto targets when first added.

The system generates EVENT:END_OF_PATH:* events only when the end of the last
path plan added is reached, since the last resume. E.g.

AircraftAddPath("aircraftPath")
AircraftAddPath("aircraftPath")
AircraftAddPath("aircraftPath")
AircraftPathFollowingResume()

will cause an EVENT:END_OF_PATH:AIRCRAFT event to be generated only after
the end of the third path section has been reached.

4.2.12 Save data to a file
The AIMSsim does not create any output files. Rather, output files are created by the
experimenter from the LUA scripts using the native LUA output capabilities.
However, if having each line of output timestamped is acceptable, then the exported
logging facilities are by far the easiest and most robust data saving mechanism. This
described in the next section.

Whichever technique you use, AIMSsim does not control where the data goes, how it
is formatted in the output file, or any file naming conventions. Some file naming
conventions that have worked well, for various types of files:

• Summary file: could contain summary information about the outcome of the
experiment. It should end with _summary.txt and not involve any streaming
data. It could for instance show the duration of the experiment, the tracking score,
etc.

• Stream file: contains information that is output at high frequency throughout the
experiment, i.e via periodic scripts. E.g. the position and orientation of the
simulated search aircraft. It should end with _stream.txt extension.

• Log file: contains a history of the important steps or computations during an
experiment it shows what happened, in what order. It should end with
_log.txt.

DRDC Atlantic CR 2006-280 25

• Each experiment initialization script creates a “results_P_T” folder in the
experiment folder, where P and T are the participant and trial number,
respectively. This folder name can be stored in a variable, to be used by all ExS
scripts.

4.2.13 Logging
As mentioned in the system manual (Schoenborn, 2007), all three of the AIMSsim
processes (simInput, simControl and simDisplay) generate their own log file, which
gets stored in the folder from which simControl is launched, and have names of the
form “process_log.txt” where process is one of the three process names. All processes
use the same logging library, which supports the concept of “loggers”, identified by a
unique character string. Each logger corresponds to a certain “category” of messages.
For instance, the “err.*” logger takes care of all error messages, whereas the “warn.*”
logger takes care of all the warning messages. The big advantage of loggers is
uniformity of output, time stamping of all messages, and the ability to filter the output
based on logger.

The set of loggers known to a given process cannot be changed. However, the two
functions LogEnable() and LogDisable() can be used to enable and disable one of
simControl’s loggers (the loggers of the two other processes cannot be changed). E.g.
the LUA tracing messages can be turned on or off at any time by calling
LogEnable("trace.LUA") and LogDisable("trace.LUA").

The Log() function outputs its argument with the logger called “scriptLog.LUA”,
which can be similarly enabled or disabled.

You can tell any logger to duplicate its output by calling the LogAddOutput() function,
The second argument is the filename that will receive the duplicated output for the
logger (first argument), or “stdout” if the output should be duplicated to the console.
Note that currently, there is no LogRemoveOutput().

4.2.14 Capture display screen
Screen shots of the entire display can be captured by sending a message to simDisplay,
i.e. SendMessage(“CAPTURE_SCREEN”). The pictures are saved in the experiment’s
folder, in a subfolder called results/screens (created for you if it does not already
exist), as a JPEG file of the form P_T_N.jpg, where P=participant # (specified on
command line, 0 if not), T=trial # (also specified on command line, 0 if not), and
N=number of screen shot (N is automatically determined and incremented at every
screen grab). Note that image files are overwritten if they already exist (e.g., from a
previous run). E.g.., if the experiment is Designation (so e.g. the main script is
Designation/main.lua), then the first screen capture will go to
Designation/results/screens/0_0_0.jpg, the next one to

26 DRDC Atlantic CR 2006-280

Designation/results/screens/0_0_1.jpg, etc. JPEG files can be viewed with
a variety of software, such as Internet Explorer.

4.3 Example use
In this section we give an example of sequence of steps you might take to create an
experiment and run it. The example is based on the Spatial Congruence Experiment.

File definitions and locations:

• /user/people/elviss/newElviss/bin/NG/SC – experiment directory
• scen#.lua – scenario definition files
• SC/util contains:

o Base.fp – flight plan file generated by Scenario Generator
o Constants.lua – includes flying pitch, target pitch, type, and 8

possible bearings; bearings identify speaker positions
o Defaults.lua – AIMSsim settings

• SC/results – contains participant log files
• SC/generic – contains script files that implement the FSM so no files there

should be changed, except toQuestion.lua (and only to change wording)

Generating scenario files:

• Copy scen1.lua into scen2-6.lua
• Open each file and assign it appropriate name (on top) as well as log file

name (bottom)
• Set map orientation

Defining target:

• Get appropriate target ID# from target_map.txt (in NG) and change type
in constants.lua

• If new target is to be used, place the file in target directory (to be found out),
add it to target_map.txt, assign it an ID# and change type in
constants.lua

Defining target locations:

• 8 target location for each flight direction (E/W)
• 4 legs (2 for each direction) makes 4 targets per leg
• Number of targets has to be a multiple of 16, to have location x flight

direction completely crossed
• Number of legs has to be even, to have equal number for each flight direction

Defining flight plan:

• Create flight plan using Scenario Generation Environment (SGE)
• Copy values into scen#.lua (might need to set initial aircraft heading or the

starting point, not sure about this)

DRDC Atlantic CR 2006-280 27

• Leg and turn lengths need to be the same across scenarios, different starting
points

• There are only 4 possible starting points: left and right, top and bottom;
problem if multiple flight plans used

Generating events:

• Once flight plan is defined, fly over terrain to identify time ranges for each
leg during which events can occur

• Leave 5 seconds at beginning/end of each leg to establish RF; also 5 seconds
between targets

• Randomly select times for each event within the given ranges

Generating target locations:

• Generate two sets of randomly ordered numbers from 1 to 8, one for each
flight direction

• Assign numbers from first set to odd legs, and from second set to even legs
(odd: 1-4 and 9-12; even: 5-8 and 13-16)

Defining audio channels:

• Current set-up (constants.lua)
o 1 (target location) = 330 deg
o 2 = 30
o 3 = 60
o 4 = 120
o 5 = 150
o 6 = 210
o 7 = 240
o 8 = 300

• For N-UP conditions, sound location will be the same as target locations
• For A-UP conditions, sound location will depend on flight direction

Flying E Flying W
1 = 7
2 = 8
3 = 1
4 = 2
5 = 3
6 = 4
7 = 5
8 = 6

1 = 3
2 = 4
3 = 5
4 = 6
5 = 7
6 = 8
7 = 1
8 = 2

28 DRDC Atlantic CR 2006-280

References

Schoenborn, O. (2007a). AIMSsim System Manual. DRDC Atlantic CR 2006-279;
CAE Professional Services, Ottawa, Ontario.

Schoenbom, O. (2007b). Herc SAR Task 106: AIMS Feature Development – Final
Report. DRDC Atlantic CR 2006-278; CAE Professional Services, Ottawa, Ontario.

Gamble, Murray G. (November 10, 2000). Proposal to Modify ELVISS Prototype
Software. Volume One - Technical and Management Proposal. The HFE Group.

Neal, B. (April 28, 1999). ELVISS Human Engineering Design Approach Document –
Operator. Canadian Marconi Company.

Neider, Jackie. (1993). OpenGL Programming Guide. Addison Wesley.

DRDC Atlantic CR 2006-280 29

List of
symbols/abbreviations/acronyms/initialisms

AGTV
AIMS
AIMSsim
ALBEDOS
ASCII

Active Gated TV
Advanced Integrated Multi-sensor Surveillance
AIMS simulator
Airborne Laser-Based Enhanced Detection and Observation System
American Standard Code for Information Interchange

DND
DREV

Department of National Defence
Defence Research Establishment Valcartier

ELVISS Enhanced Low-Light Level Visible and Infrared Surveillance
System

FLIR
FLTK
FOV
FSM

Forward Looking Infrared
Fast Light Tool Kit
Field of View
Finite State Machine

HMI Human Machine Interface

LOS Line of sight

IR Infrared

MMD Moving Map Display

N/A Not Applicable

PC Personal Computer

SAR
SGE
SGI

Search and Rescue
Scenario Generation Environment
Silicon Graphics, Inc.

TOD Time of Day

VAPS
VPI

Virtual Applications Prototyping System
Virtual Prototypes, Inc.

Wx Weather

30 DRDC Atlantic CR 2006-280

Annex A. Exported AIMSsim Functions and Variables

This section describes all AIMSsim HMI Prototype functions and variables available
through the scripting interface, i.e. that have been exported to the LUA interpreter
embedded in simControl.

A.1 Exported Functions

Table 2. Exported functions and their parameters

Function Parameters Description
Log string Logs string to the currently set log file
LogEnable/LogDisable string loggerName Enable/disable output of log messages for specified

logger
LogAddOutput string loggerName,

fileName
Duplicate output going to specified logger into
specified file. If file name is “stdout”, duplicates to
the shell window (from which AIMSsim was
started)

Set string name,
string/number value

Sets a system variable to the provided value – see
list below

Say string Deprecated – no TTS App
PlaySpatialSound number channel Deprecated – no sound system

GetVectorHP number x, y, z Returns the heading, pitch for the given vector in

world frame. Heading 0 implies North and
increases counterclockwise, negative pitch is below
horizon..

GetLOSPosition none Returns the x,y,z position of the terrain in the
centre of the sensor image (Line Of Sight) as
computed by simDisplay.

GetLOSPosition string “control” Returns the x,y,z position of the terrain in the
centre of the sensor image (Line Of Sight) as
computed by simControl.

GetSensorOrientation none Returns the h,p,r orientation of the sensor
SetSensorOrientation number h,p Set new heading (and pitch, if given) of sensor pod.

This can only be called if
orientationControl has been set to
ORIENT_CTL_OPERATOR

GetSensorFOV none Returns the Field of View of the sensors
(AGTV,FLIR)

GetSensorZoom none Returns the zoom factor of each sensor
(AGTV,FLIR), a value between 0 (full zoom out)
and 1 (full zoom in)

GetViewportInfo string “AGTV” or
“FLIR”

Returns the width, height, and dots-per-inch along
width and height, for the specified sensor display

SetDisplayLookAtPoint number x, y, z Set the world coordinate that sensor must lock onto
if the orientationControl is set to
ORIENT_CTL_LOOKAT

SetAutoScanInfo string state, number
center, number range

If first arg is DISABLED, disable any auto-
scanning, no more args used; if ENABLED, two

DRDC Atlantic CR 2006-280 31

more args used: center of scan angle, relative to
aircraft, and the scan range, both in degrees

AddPeriodicScript string scriptName Adds a script that is called periodically at high

frequency – useful for data collection
ClearPeriodicScripts none Clears all of the current periodic scripts
RemovePeriodicScript string scriptName Remove a script from list of periodic scripts; does

nothing if script not in list

AddTransition string fromState,

string toState,
string triggerEvent,
string scriptName

Adds a state transition to help define the
experiment finite state machine

AddTimedEvent string eventName,
number eventTime

Adds an event to occur at the simulation time
provided; more than one time can be given

AddFlightTimedEvent string eventName,
number eventTime

Adds an event to occur at the flight time provided;
more than one time can be given

GenerateEvent string eventName Generates an event
ClearEvents none Clears all pending timed events (timed, flight

timed)
SendMessage string message Sends a control message to the UI – see Table 5

CreatePathPlan string planName Create a new path plan
PathPlanAddWaypoint string planName,

number x,y,z,speed
Adds a waypoint to the specified path plan

PathPlanReadWaypointsFile string planName,
fileName

Read the specified waypoints file (XML file) into
the specified path plan, appending the points

PathPlanGetFirstWaypoint string planName Get first waypoint of a plan
PathPlanGetNextWaypoint string planName Get next waypoint of a plan, nil if no more points
PathPlanClear string planName Clears the points of a plan (but does not destroy

plan)
PathFollowingPause none, or sequence of

entity names
Pauses the path following behaviour of all entities
(including aircraft) if no arguments, or of the
specified entities if given. Use “aircraft” for the
aircraft entity.

PathFollowingResume string planName Same as PathFollowingPause, but to resume
PathFollowingToggle string planName Same as PathFollowingPause but toggles:

resume vehicle motion for every vehicle if paused,
and pause if resumed.

AircraftGetPosition none Returns the x,y,z position of the aircraft
AircraftGetOrientation none Returns the h,p,r orientation of the aircraft
AircraftGetVelocity none Returns the vx,vy,vz velocity of the aircraft
AircraftAddPath string planName Copy the specified path object and append to flight

plan. If first call, also positions aircraft onto first
point of path. For subsequent calls, the path plan
copy is translated and rotated so the common point
has collinear vertices.

AircraftPathFollowingResume none Resume motion on path; does nothing if end of
path reached

AircraftPathFollowingPause none Pause motion on path
AircraftPathFollowingToggle none Toggle motion: pause if resumed, resume if paused
AircraftPrintPath none Dump information about the complete path so far;

mostly for debugging the path planning

ReadTargetsFile string fileName Read the specified targets XML file and create

32 DRDC Atlantic CR 2006-280

targets; this appends targets to current set of targets
ClearTargets none Removes all targets from the scene
UpdateDisplayedTargets none Causes simDisplay to update all visual aspects of

all targets, including added/removed targets
UpdateDisplayedTargets string target1Name,

target2Name, …
Causes simDisplay to update all visual aspects of
specified targets; only valid for pre-existing targets

CreateTarget string name, number
type, x,y,z,h,p,r

Adds a target to the outside scene with ID name,
and type as an index in the targets.txt file. Places
target at x,y,z,h,p,r

TargetChangeAttrib string targetName,
attribName, any
newNalue

Change the specified target’s specified attribute to
new_value. The type of new_value depends on the
type of the attribute. Valid attribute names and
associated new value type:
 label string
 isTarget boolean
 retroReflective boolean
 colorOverrideAGTV boolean
 colorOverrideFLIR boolean
 colorInAGTV number, 0..1
 colorInFLIR number, 0..1

TargetGetAttrib string targetName,
attribName

Get specified attribute from specified target. Valid
attribute names and associated value type:
 label string
 isTarget boolean
 designationZoneRadius boolean
 pos x, y, z
 vel vx, vy, vz

TargetClampGround string targetName Clamp given target to ground
TargetAddPath string targetName,

planName
Copy the specified path object and append to
vehicle path plan. If first call, translates path onto
current target position. For subsequent calls, the
path plan copy is translated and rotated so the
common point has collinear vertices.

TargetSetEndOfPathEventSuffix string targetName,
suffix

Changes the last part of “end of path” event name
for specified target. Default suffix is target’s name.
Note that suffix is always converted to all-
uppercase, and spaces are converted to underscore.

TargetPathFollowingResume none Resume motion on path; does nothing if end of
path reached

TargetPathFollowingPause none Pause motion on path
TargetPathFollowingToggle none Toggle motion: pause if resumed, resume if paused

GetRuntime none Returns the seconds count since the beginning of

the simulation (which is not the same as the
simulation time, the time reported in the top right
of the map)

ResetUserTimer none Resets the user timer – use to start timing a
response

GetUserElapsedTime none Returns the elapsed time in seconds since the user
timer was last reset

SetInt string name, number

value
Sets the named user variable to the value provided

SetIntArrayElement string name, number Sets the value of the named array at the index
provided to the value provided

DRDC Atlantic CR 2006-280 33

index, number
value

SetFloatArrayElement string name, number
index, number
value

As above, but for floating point numbers

GetInt string name Returns the value of the named user variable
GetIntArrayElement string name, number

index
Returns the named and indexed value

GetFloatArrayElement string name, number
index

As above, but for floating point numbers

RequestIsect number bearing,

pitch
Returns validity, x, y, z for a line leaving aircraft
with bearing, pitch (given in world frame). Validity
is true only if line hits terrain or a target. This is
computed by simControl.

RequestIsect number bearing,
pitch, string
“display”

Request an intersection computation from aircraft
to terrain, at bearing and pitch (given in world
frame), but the computation will be done by
simDisplay and made available via GetIsectPos()
after an EVENT:ISECT_VALID.

GetIsectPos none Returns the x,y,z location of the last intersection
request. Only read in response to an
EVENT:ISECT_VALID, or anytime after such an
event.

GetParticipant none Returns the current participant number
GetTrial none Returns the current trial number

A.2 Exported Variables
The exported variables can be changed through the exported Set() function, but their
state can not be queried.

Table 3. Exported variables, and their type or possible values

Variable Name Value Description
baseTerrain string The path and name of the base

terrain database
polarPlotState ENABLED | DISABLED Sets visibility of the polar plot,

indicating heading of sensor
relative to aircraft

agtvState ENABLED | DISABLED Sets the visibility of the AGTV
sensor image

flirState ENABLED | DISABLED Sets the visibility of the FLIR
sensor image

mapState ENABLED | DISABLED Sets the visibility of the Moving
Map Display

autoTrackState ENABLED | DISABLED Tell HMI the state of geo-
stabilized tracking mode

autoAlignState ENABLED | DISABLED Tell HMI the state of auto-

34 DRDC Atlantic CR 2006-280

alignment-to-aircraft-heading

degredationState ENABLED | DISABLED Sets image degradation for the

sensors
timeOfDay Float, 0..1 Sets the time of day for the

darkness of the AGTV image; 0 =
midnight, 1 = noon

primarySensor PRIM_AGTV | PRIM_FLIR Sets the primary sensor to AGTV
or FLIR, this affect which sensor
footprint displayed in MMD

fogDistance Float >= 0 Sets the fog’s zero visibility
distance

fogOnset Float >= 0 Sets the onset distance for the
linear fog

fogColor Float, 0..1 Color of fog
orientationControl ORIENT_CTL_CPU,

ORIENT_CTL_OPERATOR,
ORIENT_CTL_LOOKAT

Sets whether the joystick
movements are used to pan camera
(sensor displays)

joystickMode JOY_MODE_AIRCRAFT
JOY_MODE_CURSOR

Sets the joystick vertical axes
mode

zoomDirMode ZOOM_MODE_FWD_ZOOM_IN
ZOOM_MODE_FWD_ZOOM_O
UT

Sets which direction of zoom
levers causes zoom in/out

maxPitch Float, -90..90 Sets the maximum pitch constraint
on camera

minPitch Float, -90..90 Sets minimum pitch constraint on
camera

mapFile string Sets path for geometry file used if
mapMode is
MAP_MODE_2D_PAPER,
overriding default

mapAcSymbolState ENABLED | DISABLED Sets the visibility of the map
aircraft symbol

mapSensorFPState ENABLED | DISABLED Sets the visibility of the map
sensor footprint

mapSensorHistoryStat
e

ENABLED | DISABLED Sets the visibility of the map
sensor history

mapSensorHistoryRate
SquareSize

Float, >= 0 Sets size of square when adding a
point to history; typical values 25m
or more

mapSensorHistoryMaxA
dd

Int, >= 0 Maximum number of history
points to add during one frame

mapMarkingState ENABLED | DISABLED Sets the visibility of the map
designate markers

mapFlightPathState ENABLED | DISABLED Sets the visibility of the map flight
path

mapNorthIndicatorSta
te

ENABLED | DISABLED Sets the visibility of the map North
indicator

mapScaleDisplayState ENABLED | DISABLED Sets the visibility of the map scale
mapColour ENABLED | DISABLED Sets the map colour mode
mapOrientation MAP_ORIENT_NORTH_UP | Sets the map orientation behaviour

DRDC Atlantic CR 2006-280 35

MAP_ORIENT_AIRCRAFT_UP |
MAP_ORIENT_SENSOR_UP

mapMode MAP_MODE_2D_PAPER |
MAP_MODE_2D_TERRAIN

Sets the map mode

mapScale float Sets the map scale desired;
assumes map geometry is full-scale

mapAcSymbolType SYMB_HELO | SYMB_FIXED |
SYMB_POINT | SYMB_NONE

Sets map symbol type

agtvColorDisplay ENABLED | DISABLED Enables/disables the color mode of
AGTV (default disabled, i.e. gray)

agtvIllState ENABLED | DISABLED Sets the state of the AGTV
Illuminator

agtvIllFOV ILL_WIDE | ILL_NARROW Sets the width of the AGTV
illuminator

agtvIllNarSize SENS_BEAM_NARROW_2 |
SENS_BEAM_NARROW_5

Sets the width of the narrow
illuminator

agtvIllWidSize SENS_BEAM_WIDE_10 |
SENS_BEAM_WIDE_15 |
SENS_BEAM_WIDE_20 |
SENS_BEAM_WIDE_25 |
SENS_BEAM_WIDE_35

Sets the width of the wide
illuminator

agtvZoomMode ZOOM_WIDE |
ZOOM_NARROW |
ZOOM_CONTINUOUS

Sets the type of the AGTV zoom to
use

agtvMaxZoomIndicator ENABLED | DISABLED Sets the state of the maximum
zoom indicator in the AGTV

agtvMinFOV float Sets the minimum FOV of the
AGTV

agtvMaxFOV float Sets the maximum FOV of the
AGTV

agtvCurrentFOV float Sets the current FOV of the AGTV
agtvDegredation float Sets the AGTV degradation factor
agtvLODScale float Sets the AGTV LOD Scale
flirPolarity POL_BLACK_HOT |

POL_WHITE_HOT
Sets the FLIR polarity

flirZoomMode ZOOM_WIDE |
ZOOM_NARROW |
ZOOM_CONTINUOUS

Sets the state of the FLIR zoom

flirMaxZoomIndicator ENABLED | DISABLED Sets the state of the maximum
zoom indicator in the FLIR

flirZoomSlaved ENABLED | DISABLED Enables/disables slaving of FLIR
zoom to AGTV zoom

flirMinFOV float Sets the minimum FLIR FOV
flirMaxFOV float Sets the maximum FLIR FOV
flirCurrentFOV float Sets the current FLIR FOV
flirDegredation float Sets the FLIR degradation factor
flirLODScale float Sets the FLIR LOD SCALE
aircraftX (YZHPR) float Sets the aircraft location and

orientation
reqBearing float Sets the requested bearing for the

LOS intersection

36 DRDC Atlantic CR 2006-280

reqPitch float Sets the requested pitch for the
LOS intersection test

logFile string Sets the name and path for the log
file

DRDC Atlantic CR 2006-280 37

Annex B. AIMSsim System Events and Messages
There are several predefined events that are generated by the AIMSsim HMI Prototype
under various conditions, and several messages that can be sent to simDisplay to have
it perform a task or change what is visible on the display.

Note that “intersection” refers to the intersection between the Line of Sight (LOS) and
the ground surface. Such a test yields both a coordinate of the intersection point, and
the normal of the polygon containing the intersection point.

Note also that all event names must start with “EVENT:” (not shown in table, for
brevity).

B.1 System Events
Table 4. System events and their trigger condition

System Event Trigger Condition
START_PRESSED The start button on the Start Screen is pressed
EXIT_PRESSED The exit button on the Exit Screen is pressed
ISECT_VALID The requested intersection test has been

completed
IMAGE_CAPTURED The screen capture request has been

completed
END_OF_PATH:AIRCRAFT The aircraft has reached the end of its flight

plan
END_OF_PATH:TARGET_NAME The target entity named TARGET_NAME

has reached then end of its path; note that
TARGET_NAME is the name of the target,
with all letters converted to uppercase, and all
spaces converted to underscore

OPERATIONAL_UPDATED The operational view of the display is now
fully visible; this gets emitted whenever the
display gets a “toOperational” command (via
SendMessage())

BUTTON_TLL Top left-most button

BUTTON_TCL Top left-of-center button

BUTTON_TCR Top right-of-center button

BUTTON_TRR Top right-most button

BUTTON_B?? Same combinations as for top row, but for
Bottom row

38 DRDC Atlantic CR 2006-280

JOYSTICK_TRIG1 Big trigger on joystick

JOYSTICK_TRIG2 Small trigger on joystick

JOYSTICK_4P_L Four-position hat left, on joystick

JOYSTICK_4P_R Four-position hat right, on joystick

JOYSTICK_4P_D Four-position hat down, on joystick

JOYSTICK_4P_U Four-position hat up, on joystick

JOYSTICK_2P_U Mini-hat up, on joystick

JOYSTICK_2P_D Mini-hat down, on joystick

LEVER_L_TRIG_L Left lever’s left trigger

LEVER_L_TRIG_R Left lever’s right trigger

LEVER_R_TRIG_L Right lever’s left trigger

LEVER_R_TRIG_R Right lever’s right trigger

B.2 Possible Messages to SimDisplay with SendMessage()
The following table outlines the commands that can be sent to the display application
using the SendMessage() function.

Table 5. Possible messages to simDisplay using SendMessage()

Command Description
toOperational Enables the “Operator screen” mode of the

prototype. This causes event
EVENT:OPERATIONAL_UPDATED to be generated as
soon as the screen becomes visible.

toStartup Displays the Startup Screen
toTrial Displays the Trial Complete Screen
toHAK Displays the Hit a Key Screen
toBlank Displays the Blank Screen
toDisQ Displays the Discrete Question Screen
toDirQ Displays the Direction Question Screen
toExit Displays the Exit Screen
MARK_CONTACT Marks the Line-of-sight isect as a target contact

DRDC Atlantic CR 2006-280 39

UPDATE_TARGETS Updates the displayed targets list
UPDATE_TARGETS_i1_i2_..._iN Same as UPDATE_TARGETS but update only the

targets numbered i1, i2, etc. This message is
generated by the system, use
UpdateDisplayedTargets(t1, t2, … tN) instead,
where the arguments are target names

REQUEST_ISECT Requests an LOS intersection test for the bearing
and range in the shared memory. It is better to use
the RequestIsect() function.

CAPTURE_SCREEN Requests a screen capture. System will generate
EVENT:IMAGE_CAPTURED

40 DRDC Atlantic CR 2006-280

Annex C. AIMSsim Target Object Types

Included with the delivery of the AIMSsim Prototype System is a library of target
object models. These models may be used as targets/non-targets for the creation and
execution of experimental scenarios. The following table provides the names of the
target objects and a description of each object model.

Table 6. Target Object Types

NAME DESCRIPTION

Truck_Desert Military truck with desert paint scheme

Truck_OD Military truck with olive drab paint scheme

Hummer_Desert Military jeep with desert paint scheme

Hummer_OD Military jeep with olive drab paint scheme

Leclerc_Tank_Desert LeClerc (French) tank with desert paint scheme

Leclerc_Tank_Camo LeClerc (French) tank with camouflage paint scheme

Leclerc_Tank_OD LeClerc (French) tank with olive drab paint scheme

T72_Tank_Desert T72 (Russian) tank with desert paint scheme

T72_Tank_OD T72 (Russian) tank with olive drab paint scheme

OH58_Helicopter OH58 Kiowa reconnaissance helicopter

AH64D_Helicopter AH64D Longbow apache attack helicopter

A10_Fighter A10 Warthog Anti-Tank Aircraft

Pyramid_1M Un-textured 1 meter high pyramid

Pyramid_2M Un-textured 2 meter high pyramid

Pyramid_3M Un-textured 3 meter high pyramid

Diamond_1M Un-textured 1 meter high diamond

Diamond_2M Un-textured 2 meter high diamond

Diamond_3M Un-textured 3 meter high diamond

Cube_1M Un-textured 1 meter high cube

Cube_2M Un-textured 2 meter high cube

Cube_3M Un-textured 3 meter high cube

Cylinder_1M Un-textured 1 meter high cylinder

DRDC Atlantic CR 2006-280 41

Cylinder_2M Un-textured 2 meter high cylinder

Cylinder_3M Un-textured 3 meter high cylinder

Pyramid_1M_TEX Textured 1 meter high pyramid

Pyramid_2M_TEX Textured 2 meter high pyramid

Pyramid_3M_TEX Textured 2 meter high pyramid

Diamond_1_TEX Textured 1 meter high diamond

Diamond_2M_TEX Textured 2 meter high diamond

Diamond_3M_TEX Textured 3 meter high diamond

Cube_1M_TEX Textured 1 meter high cube

Cube_2M_TEX Textured 2 meter high cube

Cube_3M_TEX Textured 3 meter high cube

Cylinder_1M_TEX Textured 1 meter high cylinder

Cylinder_2M_TEX Textured 2 meter high cylinder

Cylinder_3M_TEX Textured 3 meter high cylinder

Murray “Murray” person figure

Homer “Homer Simpson” person figure

42 DRDC Atlantic CR 2006-280

Annex D. Converting .flt files to .ive

OpenSceneGraph accepts a variety of input file formats for geometry. The fastest
format to load is a binary format that has the “ive” extension. The program
osgconv.exe can be used easily to convert any of the file formats understood by
OpenSceneGraph to any other format. E.g., from your command shell you could do
>> osgconv truck.flt truck.ive

to convert the truck geometry stored as an OpenFlight format into OpenSceneGraph’s
binary format. The above assumes you have downloaded and installed osgconv from
the OpenSceneGraph web site (www.openscenegraph.org), that osgconv.exe is in your
PATH environment variable, and that the truck.flt geometry and its textures are in the
current folder.

DRDC Atlantic CR 2006-280 43

Annex E. AIMSsim Scenario Generation Environment

E.1 Introduction
The AIMSsim Scenario Generation Environment (SGE) allows you to define the
elements required to create an experimental scenario. The SGE also allows you to
preview some elements of the scenario as it is being created. Specifically, you can:

• Define a scenario terrain database for the simulated environment.

• Place target objects into the simulated environment.

• Define a flight path for a simulated search aircraft.

• Define moving map characteristics.

• Adjust various simulated sensor characteristics.

• Adjust simulated environmental conditions.

• Configure the layout of the Human Machine Interface (HMI).

The SGE uses a project concept. An SGE project is a collection of all the files that
together make up an experimental scenario. You begin by planning your project and
then create various files as you perform the tasks required to build your experimental
scenario. The SGE uses four files to define a scenario: a target file, a flight plan file, a
configuration file and a project file.

• The target file (targets.xml) contains the information required to represent the
placement and characteristics of all targets for a given scenario.

• The flight plan file (flightplan.xml) contains the information required to create a
flight path for a simulated search aircraft.

• The configuration file (config.xml) contains various elements of scenario
configuration information including a definition of the Scenario Landscape, the
configuration of the simulated sensors and the configuration of the HMI
Prototype.

• The project file (project.xml) contains a reference to a target file, a flight plan file
and a configuration file which, when treated as a group, represent a complete
experimental scenario.

Note however that only two of the files (i.e. targets.xml and flightplan.xml) produced
by the SGE are usable by the AIMSsim HMI Prototype, a significant departure from
the old AIMSsim system. The scenario development process, if you wish to you use
the SGE, is therefore as sketched in Figure 11.

44 DRDC Atlantic CR 2006-280

Scenario Generation
Environment

ELVISS HMI Prototype

•Define/Place target objects
•Define simulated search aircraft
flight path
•Adjust sensor characteristics
•Define environmental conditions
•Configure user interface layout

Text editor of your choice
SGE

project files

ELVISS
Experiment
LUA scripts

Figure 11. AIMSsim experiment development process when it involves the SGE

E.2 Starting and Exiting the SGE
To start the SGE type scenGen in a command prompt window open to the location of
the SGE executable file. This will load the SGE. You may also double-click on this
executable file on your desktop or from the Windows Explorer application wherever it
happens to reside on your local/network drive.

To exit the SGE, choose File | Exit.

E.3 A quick look at the SGE
Once you start the SGE, you will use various controls to perform your scenario-
building tasks:

• The Moving Map Display (MMD) and Toolbar allow you to navigate the terrain
and scrutinize the placement of objects. You may also view a 3D display of the
object and its placement in the terrain by pressing the ‘view’ button.

• The Targets tab allows you to add and delete targets from the scenario as well as
to control the characteristics of the targets.

• The Aircraft tab allows you to define a flight path for a simulated search aircraft.

• The Sensors tab allows you to control the characteristics of the simulated AGTV
and FLIR sensors.

• The Map tab allows you to select map characteristics.

• The Environment tab allows you adjust environmental settings for the scenario.

• The Misc tab allow some additional settings to be selected.

DRDC Atlantic CR 2006-280 45

• The Altitude Profile Display provides you with information about the altitude of
the simulated search aircraft with respect to time.

• The Scenario Summary provides you with summary information about the
duration of the current scenario and the number of targets/non-targets defined in
the current scenario.

The SGE also includes various menus, each with its own set of commands and/or
options that you can use to perform functions such as loading/saving scenarios and
files and selecting the scenario landscape.

E.4 The SGE Interface
The SGE interface consists of a single window that is divided into six main areas and a
menu bar, as illustrated in Figure 12. The options provided in the pull-down menus
are described in the following sections.

Figure 12. SGE Interface

E.5 Using the AIMSsim SGE
The following sections will provide information about using the SGE to perform the
standard tasks required to build AIMSsim experimental scenarios.

46 DRDC Atlantic CR 2006-280

1. Defining a Scenario Landscape (Terrain)
Each AIMSsim experimental scenario is based on a terrain database. To open a database,
use Terrain | Select… in the SGE window. Terrain database files may be recognized by
the .ive file extension. Navigate to the appropriate directory and select the file that you
want to open, and click OK. The selected terrain database appears in the Moving Map
Display (MMD) area.
The terrain databases that are supplied with AIMSsim include: the Certain Impact
database and the Nerepis database. To navigate “certain_impact/models” select
“terrain.pfb”. To use the Nerepis database, follow the instructions in the following
paragraph.
When selecting a terrain in the Nerepis database select only: NE, SW, NW, or SE. When
navigating the directories that contain terrain data you will find multiple files: one with
“_bw”, “_shaded”, or “shaded_bw” in the name and one without (i.e. terrain.pfb and
terrain_bw.pfb). The file name that contains “_bw” is the black and white version of the
terrain database – this version should not be used in the SGE neither should “_shaded”,
nor “shaded_bw”. Instead, use the file without “_bw” in the file name – this is the colour
version of the terrain database and should be used in the SGE.

2. Using the Moving Map Display
The SGE allows you to navigate the Scenario Landscape via the Moving Map Display
(MMD) which is located in the box on the left hand side and associated Toolbar. The
main purpose of the MMD is to provide a visual overview of the experimental scenario
and to facilitate accurate placement of scenario elements (targets and waypoints) on the
Scenario Landscape.

a. The MMD Toolbar
The MMD Toolbar provides additional tools to facilitate the manipulation of the MMD
(see Figure 13). The Toolbar provides such functions as Grab, Centre On, Step Zoom In
and Step Zoom Out.
The Grab tool provides an easy means to navigate the Scenario Landscape by allowing
the user to grab and drag the terrain in any direction. To use the Grab tool, simply click
on the Grab tool icon. Now use the left mouse button to select a drag point on the terrain
and with the left mouse button depressed, move the mouse in any direction to drag the
terrain. The Grab tool mode is persistent, so when you have finished repositioning the
terrain, de-select the grab tool by clicking on the Grab tool icon.
The Centre-On tool allows you to select a point on the Scenario Landscape that you wish
to specify as the new “centre” for the MMD. To use the Centre-On tool, click the Centre-
On tool icon. Use the mouse to position the cursor over the position that you would like
to specify as the new centre for the MMD and depress the left mouse button to re-centre
the map. The Centre-On tool mode is also persistent, so when you have finished
specifying a new centre, you will have to de-select the Centre-On tool. The Centre-On
function is particularly useful when you wish to quickly zoom in on a specific position on
the terrain: rather than having to use a combination of Grab and Zoom actions simply
centre on the area of interest and use the Step Zoom functions to achieve the desired zoom
level.
The Step Zoom In and Step Zoom Out tools allow you to quickly zoom in and out on the
MMD in an incremental fashion. To Step Zoom In: click on the Step Zoom In icon.

DRDC Atlantic CR 2006-280 47

To Step Zoom Out: click on the Step Zoom Out icon. The zoom function will halve the
current zoom setting or double the current zoom setting, as appropriate.

Figure 13. MMD Toolbar Functions

3. Manipulating Targets
Target objects form the basis for the search and detection task utilized in the empirical
investigation of AIMSsim user interface issues. A target is a three-dimensional object or
3D model with certain scenario related characteristics assigned to it by the user. Targets
may be added or deleted from a scenario. The target manipulation interface is presented
in Figure 14.

Figure 14. Target Manipulation Interface

a. Adding a Target
In the tabbed area select Targets. The target manipulation area will be

displayed.

48 DRDC Atlantic CR 2006-280

In order to achieve the most accurate placement of target objects, you
should zoom in to the desired placement area on the MMD before
selecting the target location.

In the Targets area, add a target by clicking the Add button. A new target
will appear in the target browser. It will have been assigned a default
name of “Target”.

At this point a target icon will not have appeared on the MMD. This is
because no position has been defined for the newly created target. To
define a geographic position for the target select a location on the
Scenario Landscape by clicking on the MMD in the location where
you’d like the target to be placed and then click the Select button in
the Position area.

A target icon will appear on the MMD over the clicked position to
indicate the selected location for the target. Target icons appear as
boxes containing an “x” symbol”.

b. Deleting a Target
1. In the tabbed area, select Targets if it is not already selected. The target

manipulation area will be displayed.

2. Select the target you wish to delete via the target browser. It will become
highlighted.

3. Delete the target by clicking the Delete button.

c. Modifying Target Parameters
Each target has a number of parameters that will affect the way the target will be utilized
by the AIMSsim HMI Prototype. The following table describes the various target
parameters and how to manipulate them.

Table 7. Target Parameters

PARAMETER
NAME

DESCRIPTION USE

Name Assigns an alpha-numeric name to the target.
The name is used to identify the target on the
MMD.

Select the Name field and type a
desired name. When finished, press
the <Enter> key to apply the new name.

Target Flags this object as being a “Target” object (as
opposed to a non-target). This parameter is
used for scoring purposes when an HMI
Prototype use has been asked to discriminate
between true target objects and false target
objects.

Click on the Target radio button to
toggle the target setting. Notice that the
colour of the target icon on the MMD will
toggle between red and green. Red
indicates that the target has been
flagged as a true target. Green signifies
a false target.

DRDC Atlantic CR 2006-280 49

Retro-Reflective Flags this object as having “retro-reflective”
characteristics. This parameter will affect the
presentation of the target when observed in the
HMI Prototype: the target will appear to “reflect”
the light emitted by the laser illuminator when
the beam is positioned on the target.

Click on the Retro-Reflective radio
button to toggle the retro-reflective
setting. Illuminated indicates retro-
reflective property enabled.

Type Defines the visual representation of the target
(people, vehicles, aircraft or geometric
primitives).

Select a type from the Type pick list.
See Annex A for descriptions of the
targets

Visibility Defines the visibility of target with respect to the
simulated AGTV and FLIR sensors.

Select a visibility setting from the
Visibility pick list. Both signifies the
target will be visible to both the
simulated AGTV and FLIR sensors.
AGTV Only means that the target will
be visible to the simulated AGTV only
and will not be visible by the FLIR.
FLIR Only means that the target will
only be visible to the simulated FLIR
sensor and will not be visible to the
AGTV sensor.

Orientation Assigns an orientation or heading to the target
object allowing it to be rotated to face in any
direction. A heading of 0 is equivalent to due
North.

Adjust the Orientation dial to specify
the desired orientation of the object.
Alternatively, you may increment or
decrement the orientation value via the
Orientation spin box.

Colour Allows you to modify the runtime colour of the
target object as it will appear to the AGTV and
FLIR sensors. The light on the Colour button
determines if the target colour has been
modified (lit) or if the default target colour is
being used (unlit).

Click the Colour button to display the
target colour manipulation window. Use
the Enable Colour Adjustment radio
buttons to enable/disable colour
adjustment for the current target as it
will be viewed by the AGTV and FLIR
sensors. When colour adjustment is
enabled, use the slider to adjust the
target colour between Dark and Light.
When you have finished adjusting target
colour settings, click OK to keep you
changes or Cancel to discard any
changes you have made.

Identifier Flags this object as being enhanced by an
identifier label. An identifier label takes the form
of a billboard “sign” that will be presented above
the target model representation when viewed in
the HMI Prototype.

Click the Identifier radio button to
select/deselect the target identifier
setting.

Label When the Identifier is enabled, Label defines
the alpha-numeric character that will be visible
on the identifier billboard.

Select an alpha-numeric value from the
Label pick-list. This parameter will only
have an effect if the Identifier
parameters have been enabled.

Position Assigns the geographic location of the target
object on the scenario landscape. The position
is specified by an x, y, and z value. These
values are in meters.

The target position may be selected
interactively by clicking the Select
button and then clicking on a location on
the MMD. Alternatively, you may select
and type discrete values into the x, y
and z fields and then hit <Enter> to
apply the new value(s).

50 DRDC Atlantic CR 2006-280

d. Previewing Target Placement and Appearance
The SGE allows you to view the placement and appearance of the targets that you have
created. This feature is particularly useful when accurate placement of objects with
respect to the surrounding terrain is desired (i.e. placing an object between two buildings,
behind a hill, etc.). The view, however, does not reflect the weather degradations and the
colour level of the targets.
To view a target, click on the target name in the target browser and press the ‘view’
button to toggle the target view mode. A 3D view of the target and its surrounding terrain
will become visible in the MMD. The target view mode is presented in Figure 15.

Figure 15. Target View Mode

In target view mode, the selected target and the surrounding scene can be navigated by
using the left and right mouse buttons. Using the left mouse button allows the user to
rotate the target and the scene to a number of angles and views. The right mouse button
allows the target and scene to be zoomed both in and out. When you are finished viewing
the target, press the ‘view’ button again to toggle out of target view mode.

DRDC Atlantic CR 2006-280 51

e. Saving the Target List
Whenever you make changes to your targets you will want to preserve those changes by
saving the target list. To save the target list, select File | Save Targets on the SGE
window menu bar. Use the file browser to navigate to the desired directory. The target
list and related target properties will be saved to the ‘targets.xml’ file within the chosen
directory. Click OK to save the target file. Alternatively you may wish to overwrite an
existing target file. In this case use the file browser to navigate to the directory that
already contains the ‘targets.xml’ file that you wish to overwrite and click OK.

4. Manipulating the Aircraft Flight Path
In order to represent the use of AIMS from an airborne platform, the AIMSsim Prototype
System allows you to define a flight path for a simulated search aircraft to which the
simulated sensors are affixed. The SGE allows you to select one of three types of flight
paths: a User Defined flight path, a Creeping Line Ahead flight pattern and an Expanding
Square flight pattern.

a. User Defined Flight Path
The User Defined flight path allows you to create a flight path made up of a sequence of
waypoints that are individually placed according to your specifications. You may specify
the location, altitude and speed of the simulated search aircraft at each waypoint. The
User Defined flight path manipulation interface is presented in Figure 16.

Figure 16. User Defined Flight Path Manipulation Interface

b. Adding a Waypoint
1. In the tabbed area select Aircraft then select the User Defined tab. The

User Defined flight path manipulation area will be displayed.

2. In the Flight Plan area, add a waypoint by clicking the Add button. A
new waypoint will appear in the Waypoint Browser. The SGE will
automatically assign a name to the waypoint (i.e. “Waypoint1”).

52 DRDC Atlantic CR 2006-280

In order to achieve a more accurate placement of waypoints, you may
want to zoom into the desired placement area on the MMD before
selecting the waypoint location.

3. At this point a waypoint icon will not have appeared on the MMD. This
is because no position has been defined for the newly created waypoint.
To define a geographic position for the waypoint, select a location on the
Scenario Landscape by clicking on the MMD in the location where you’d
like the waypoint to be placed and then click the Select button in the
Position area.

4. A waypoint icon will appear on the MMD over the clicked position to
indicate the selected location for the waypoint. Waypoint icons appear as
cyan coloured stars. Once more than one waypoint has been defined, the
flight path will appear on the MMD as a cyan line connecting waypoint to
waypoint.

5. The Altitude Profile Display provides you with information about the
relative altitude of your waypoint from ground level.

c. Deleting a Waypoint
1. In the tabbed are select Aircraft if it is not already selected. The flight

path manipulation area will be displayed.

2. Select the waypoint you wish to delete via the Waypoint Browser. It will
become highlighted.

3. Delete the waypoint by clicking the Delete button. Any remaining
waypoint will automatically be re-named to ensure a continuous sequence
of numbers in the flight plan.

d. Modifying Waypoint Parameters
Each waypoint has a number of parameters that will affect the way the waypoint will be
utilized by the AIMSsim HMI Prototype. The following table describes the various
waypoint parameters and how to manipulate them.

Table 8. User Defined Waypoint Parameters

PARAMETER
NAME

DESCRIPTION USE

Position Assigns the geographic location of the waypoint
object on the scenario landscape. The position
is specified by an x, y, and Altitude value.
These values are in meters.

The waypoint position may be selected
interactively by clicking the Select
button and then clicking on a location on
the MMD. Alternatively, you may select
and type discrete values into the x, y
and Altitude fields and then hit <Enter>
to apply the new value(s).

DRDC Atlantic CR 2006-280 53

Speed Assigns a speed to the simulated search
aircraft once it reaches that waypoint. Speed is
specified in knots.

Click on the increment or decrement
controls on the Speed spin box to
increase or decrease the speed of the
simulated search aircraft.

e. Creeping Line Ahead Flight Pattern
The SGE allows you to generate flight patterns that are commonly employed by the
search and rescue community. The “Creeping Line Ahead” is one of these patterns. The
“Creeping Line Ahead” comprises a pattern of equally spaced parallel lines. It is a
general search pattern that attempts to ensure even search coverage over a designated
search area. A “Creeping Line Ahead” pattern is depicted in Figure 17.

Figure 17. Creeping Line Ahead Search Pattern

By providing some elementary parameter values, the SGE will automatically generate a
sequence of waypoints for you.

f. Creating a Creeping Line Ahead Flight Pattern
To create a Creeping Line Ahead flight pattern:

1. In the tabbed area select Aircraft then select the Creeping Line tab. The
Creeping Line Ahead flight path manipulation area will be displayed.

2. In the Start Point area, designate the start point for the pattern by clicking
a location on the MMD and then pressing the Select button. The

54 DRDC Atlantic CR 2006-280

Creeping Line Ahead flight pattern will be displayed on the MMD
configured with default parameter values.

g. Modifying the Creeping Line Ahead Flight Pattern
The Creeping Line Ahead flight pattern is created based on a number of parameters.
Changing these parameters will affect the geographic area that the pattern will cover and
the rate at which the area is covered. The following table describes the various
parameters that affect the Creeping Line Ahead flight pattern and how to modify them.
The Creeping Line Ahead manipulation interface is depicted in Figure 18.

Figure 18. Creeping Line Ahead Flight Pattern Manipulation Interface

 Table 9. Creeping Line Ahead Parameters

 PARAMETER
NAME

DESCRIPTION USE

 Position Assigns the geographic location of the starting
point for the flight pattern. The position is
specified by an x, y, and Altitude value. These
values are in meters.

The Start Point position may be
selected interactively by clicking on a
location on the MMD and then pressing
the Select button. Alternatively, you
may select and type discrete values into
the x, y and Altitude fields and then hit
<Enter> to apply the new value(s).

 Speed Defines the speed at which the simulated
search aircraft will fly the flight pattern.

Click on the increment or decrement
controls on the Speed spin box to
increase or decrease the speed of the
simulated search aircraft.

DRDC Atlantic CR 2006-280 55

 S Represents the separation between the flight legs
that make up the pattern. S is measured in
kilometres.

Click on the increment or decrement
controls on the S spin box to increase
or decrease the leg separation. This
value should be at least 0.1 km.

 Leg Length Represents the length of the flight legs that make
up the pattern. Leg Length is measured in
kilometres.

Click on the increment or decrement
controls on the Leg Length spin box to
increase or decrease the length of the
flight legs.This value should be at least
0.1 km.

 # of Legs Assigns the number of flight legs that will make up
the flight pattern.

Click on the increment or decrement
controls on the # of Legs spin box to
increase or decrease the number of
legs that make up the pattern.

Figure 19 describes the Creeping Line Ahead flight pattern and the parameters used to
generate it.

Figure 19. Creeping Line Ahead Parameters

h. Expanding Square Flight Pattern
The “Expanding Square” is another commonly used search pattern. It is made up of a
pattern of progressively larger squares (a ``square spiral''). The “Expanding Square”
flight pattern is a more specialized search pattern employed when the general location of
the object or person being searched for is known and the search crew wishes to
concentrate around that area. An “Expanding Square” flight pattern is depicted in Figure
20. By providing some elementary parameter values, the SGE will automatically generate
a sequence of waypoints for you.

i. Creating an Expanding Square Flight Pattern
To create an Expanding Square flight pattern:

Leg Length

S
(Leg Separation)

Start Point

56 DRDC Atlantic CR 2006-280

1. In the tabbed area select Aircraft then select the Expanding Square tab.
The Expanding Square flight path manipulation area will be displayed.

2. In the Start Point area, designate the start point for the pattern by clicking
a location on the MMD and then pressing the Select button. The
Expanding Square flight pattern will be displayed on the MMD
configured with default parameter values.

Figure 20. Expanding Square Search Pattern

j. Modifying the Expanding Square Flight Pattern
The Expanding Square flight pattern is created based on a number of parameters.
Changing these parameters will affect the geographic area that the pattern will cover and
the rate at which the area is covered. The following table describes the various
parameters that affect the Expanding Square flight pattern and how to modify them. The
Expanding Square manipulation interface is depicted in Figure 21.

DRDC Atlantic CR 2006-280 57

Figure 21. Expanding Square Flight Pattern Manipulation Interface

 Table 10. Expanding Square Parameters

 PARAMETER
NAME

DESCRIPTION USE

 Position Assigns the geographic location of the starting point
for the flight pattern. The position is specified by an
x, y, and Altitude value. These values are in
meters.

The Start Point position may be
selected interactively by clicking the
Select button and then clicking on a
location on the MMD. Alternatively, you
may select and type discrete values into
the x, y and Altitude fields and then hit
<Enter> to apply the new value(s).

 Speed Defines the speed at which the simulated search
aircraft will fly the flight pattern.

Click on the increment or decrement
controls on the Speed spin box to
increase or decrease the speed of the
simulated search aircraft.

 S Represents the separation between the flight legs
that make up the pattern. S is measured in
kilometres.

Click on the increment or decrement
controls on the S spin box to increase
or decrease the leg separation. This
value should be at least 0.1 km.

 # of Legs Assigns the number of flight legs that will make up
the flight pattern.

Click on the increment or decrement
controls on the # of Legs spin box to
increase or decrease the number of
legs that make up the pattern.

 Direction Dictates the direction of the first turn that is made in
the pattern. The direction may be clockwise or
counter-clockwise.

Select the desired direction from the
Direction pick-list.

58 DRDC Atlantic CR 2006-280

Figure 19 describes the Expanding Square flight pattern and the parameters used to
generate it.

Figure 19. Expanding Square Parameters

k. Saving a Flight Plan
Whenever you make changes to your flight plan you will want to preserve those changes
by saving the flight plan. To save the flight plan, select File | Save Flight Plan on the
SGE window menu bar. Use the file browser to navigate to the desired directory click
OK to save the flight plan. Alternatively you may wish to overwrite an existing flight
plan file. In this case use the file browser to navigate to the directory that contains the file
that you wish to overwrite and click OK.

5. Manipulating Sensors
At the core of the AIMSsim are two electro-optical sensors: an AGTV and a FLIR. The
SGE allows you to control a number of sensor parameters. These parameters affect the
way the simulated sensors will operate, as well as the way in which they will be presented
in the HMI Prototype. The sensor manipulation interface is presented in Figure 22.

Start Point S
(Leg Separation)

Direction

DRDC Atlantic CR 2006-280 59

Figure 22. Sensor Manipulation Interface

The following table describes the various sensor parameters and how to modify them.
Field of view is referred to as the FOV.

Table 11. Sensor Parameters

PARAMETER
NAME

DESCRIPTION USE

Sensor Window
Configuration

Controls the layout of the sensor video
presentation in the HMI Prototype. Valid
settings are “Both Equal”, “AGTV Primary”,
“FLIR Primary”, “AGTV Only” AND “FLIR Only”.
Currently, “Both Equal” uses two 640x480
screen areas for the sensor display. The only
and Primary modes use a larger 4:3 section of
the screen for the primary sensor (768x576).

Select the desired sensor window
configuration from the Sensor Window
Configuration pick-list.

Slave Sensor
FOV

“Slaves” the FLIR sensor FOV to that defined
for the AGTV. ie. the FOV’s for both are the
same, only one control needed to zoom in/out.

Click on the Slave Sensor FOV radio
button to toggle the FOV slave setting.

AGTV Min Assigns the minimum allowable AGTV FOV
that may be achieved in the HMI Prototype.

Click on the increment or decrement
controls of the Min spin box to increase
or decrease the minimum sensor FOV.

AGTV Max Assigns the maximum allowable AGTV FOV
that may be achieved in the HMI Prototype.

Click on the increment or decrement
controls of the Max spin box to increase
or decrease the maximum sensor FOV.

60 DRDC Atlantic CR 2006-280

AGTV Continuous Defines the zoom control for the AGTV (in the
HMI Prototype) to be a continuous range
between the AGTV Minimum FOV and the
AGTV Maximum FOV.

Click on the Continuous radio button to
toggle the FOV setting between
“Continuous” and “Discrete”.

AGTV Discrete Defines the zoom control for the AGTV (in the
HMI Prototype) to be a discrete setting. This
discrete setting may be selected at runtime by
the HMI Prototype operator to be the AGTV
Minimum FOV or the AGTV Maximum FOV.

Click on the Discrete radio button to
toggle the FOV setting between
“Continuous” and “Discrete”.

FLIR Min Assigns the minimum allowable FLIR FOV that
may be achieved in the HMI Prototype.

Click on the increment or decrement
controls of the Min spin box to increase
or decrease the minimum sensor FOV.
This control has no effect when Slave
Sensor FOV is selected.

FLIR Max Assigns the maximum allowable FLIR FOV that
may be achieved in the HMI Prototype.

Click on the increment or decrement
controls of the Max spin box to increase
or decrease the maximum sensor FOV.
This control has no effect when Slave
Sensor FOV is selected.

FLIR Continuous Defines the zoom control for the FLIR (in the
HMI Prototype) to be a continuous range
between the FLIR Minimum FOV and the FLIR
Maximum FOV.

Click on the Continuous radio button to
toggle the FOV setting between
“Continuous” and “Discrete”. This
control has no effect when Slave
Sensor FOV is selected.

FLIR Discrete Defines the zoom control for the FLIR (in the
HMI Prototype) to be a discrete setting. This
discrete setting may be selected at runtime by
the HMI Prototype operator to be the FLIR
Minimum FOV or the FLIR Maximum FOV.

Click on the Discrete radio button to
toggle the FOV setting between
“Continuous” and “Discrete”. This
control has no effect when Slave
Sensor FOV is selected.

Simulate CCD Enables/Disables the simulation of a CCD
camera in place of the AGTV sensor
simulation. It’s a camera with no laser
illuminator (essentially a normal camera)

Click on the Simulate CCD radio button
to toggle the CCD simulation setting
between enabled (lit) and disabled
(unlit).

Default Beam
Width

Defines the default setting for the simulated
laser illuminator beam width. The operator may
override the default setting at runtime. Valid
beam widths are “Wide” and “Narrow”.

Select the desired default beam width
from the Default Beam Width selection
list.

Narrow Defines the size (in degrees) of the laser
illuminator beam when the AGTV is operated in
“Narrow” FOV mode. Valid settings are 2° and
5°.

Select the desired illuminator beam size
from the Narrow selection list.

Wide Defines the size (in degrees) of the laser
illuminator beam when the AGTV is operated in
“Wide” FOV mode. Valid settings are 10°, 15°,
25°,30° and 35°.

Select the desired illuminator beam size
from the Wide selection list.

a. Saving the Sensor Configuration
Whenever you make changes to your sensor configuration you will want to preserve those
changes by saving the scenario configuration settings. Unlike the target and flight plan

DRDC Atlantic CR 2006-280 61

parameters; the sensor configuration is saved together with the environmental settings and
the Scenario Landscape definition. So keep in mind, when you are saving the sensor
configuration, you are also saving those settings.
To save the sensor configuration, select File | Save Config on the SGE window menu bar.
Use the file browser to navigate to the desired directory and click OK to save the
configuration. Alternatively you may wish to overwrite an existing configuration file. In
this case use the file browser to navigate to the directory that contains the file that you
wish to overwrite and click OK

6. Manipulating the Map
The SGE allows you to control various HMI map options. The moving map is located in
the upper right quadrant of the screen. When selecting a map mode this involves 8 options
which include both 2D and 3D maps:
1) No map.

The Map portion of the HMI is blank.
2) 2D Paper

A correlated paper map image. This option requires that a papermap be
available for the area in the terrain database. (Nerepis Only)

3) 2D Terrain
A 2D moving map created using a bird's eye view of the terrain database. This
is available for all databases.

4) 2D Shaded
An elevation shaded representation of the terrain. This requires a special
correlated database. (Nerepis Only)

5) Immersed
3D view of the database from the sensor position. A blue “ghost-ball” is used to
indicate the users field-of-view.

6) Immersed Shaded
Same as Immersed, using the elevation shaded map.

7) Tethered
3D view of the database from slightly above and behind the sensor position. A
blue “ghost-ball” is used to indicate the users field-of-view. A 3D model is
used to represent the search aircraft.

8) Tethered Shaded
Same as Tethered, using the elevation shaded map.

Another option in manipulating the map allows for adjusting parameters. A scale can be
selected from a range of 1000 to 250 000. A map scale will appear on the 2D map views
for certain values. The ratios of 1: 1000, 10000, 25000, 50000, 100 000, 125 000, 200
000, and 250 000 will have a scale shown. Furthermore, 3 options are available for map
orientation: 1) North Up (map is always oriented North regardless of the flight), 2)
Aircraft Up (map orients according to aircraft position during flight), and 3) Camera Up
(map orients according to camera position).

There are 4 options available for the aircraft symbol on the moving map: 1) Rotary Wing
(simple helicopter-like icon), 2) Fixed Wing (simple aircraft-like icon), 3) Pointer (simple
circle with an indicator, which points in the direction the search), and 4) There is also an
option for no icon.

62 DRDC Atlantic CR 2006-280

This section also provides a function for colour or greyscale. Search history can be
enabled (selection of function on/function off). The search history marks a blue trail on
the map, of the user’s search. A Marking Function is also an option that can be enabled
(selection of function on/function off). The marking function will show a numbered box
on the map in the position of the designation when a 2D map is displayed in the MMD.
Designations are number in chronological order. A white dot appears on the map in the
position of the designation when a 3D map is displayed in the MMD.

7. Manipulating the Environment
The SGE allows you to control various simulated environmental parameters. These
parameters will impact on the effectiveness of the simulated sensors in the HMI
Prototype.
The following table describes the various environment parameters and how to modify
them.

Table 12. Environment Parameters

PARAMETER
NAME

DESCRIPTION USE

Time of Day
(TOD)

Controls the amount of ambient light
illuminating the AGTV. Time of Day is
measured on a scale from 0.0 to 1.0. A value
of 0.0 represents complete darkness while a
value of 1.0 represents maximum illumination.

Select the desired TOD setting by
positioning the Time of Day slider.
Alternatively, you may increment or
decrement the TOD via the Time of
Day spin box.

Visibility Defines the visibility setting for the experimental
scenario. Valid selections are “Clear” and
“Degraded”.

Select the desired visibility setting via
the Visibility pick-list.

AGTV Effect Determines the amount of degradation in the
AGTV sensor. Selecting the setting “1” will
result in complete degradation, selecting the
setting “0” results in no degradation. (For
example, the effect introduces noise.)

Click on the increment or decrement
controls of the AGTV Effect spin box to
increase or decrease the amount of
degradation of the simulated AGTV
sensor.

FLIR Effect Determines the amount of degradation in the
FLIR sensor. Selecting the setting “1” will result
in complete degradation, selecting the setting
“0” results in no degradation. (For example, the
effect introduces noise.)

Click on the increment or decrement
controls of the FLIR Effect spin box to
increase or decrease the weather
effectiveness of the simulated FLIR
sensor.

a. Description of the Degradation Effect
Computer images often appear unrealistically sharp and well defined. The degradation
effect decreases this sharpness or the definition of these images through the addition of a
transparent-noise-screen. A percentage of degradation can be selected on a scale of 0 to 1,
which will remain consistent throughout the scene. The selection of zero results in no
degradation, while 1 is complete degradation. Degradation is used to better simulate real
world conditions.

DRDC Atlantic CR 2006-280 63

b. Saving the Environment Configuration
The environment configuration is saved together with the sensor configuration and the
Scenario Landscape information. For detailed information on saving the environment
configuration, please refer to Section a - Saving the Sensor Configuration.

8. Manipulating Additional Scenario Settings
The SGE allows to you control additional scenario settings. These miscellaneous settings
control the default configuration of the HMI Prototype display and of the HMI control
hardware. The miscellaneous settings manipulation interface is presented in Figure 23.

Figure 23. Miscellaneous Settings Manipulation Interface

The following table describes the various miscellaneous parameters and how to modify
them.

Table 13. Miscellaneous Parameters

PARAMETER
NAME

DESCRIPTION USE

Scan Enabled Controls the default state (enabled/disabled) of
the automatic sensor scan function in the HMI
Prototype. When the scan is enabled, the
terrain is automatically scanned with no
movement of the joystick.

Select the default state of the scan
function: enabled (lit) or disabled (unlit)
by clicking on the Scan Enabled radio
button.

64 DRDC Atlantic CR 2006-280

Scan Rate Controls the default scan rate of the automatic
sensor scan function in the HMI Prototype.
Valid scan rates are “1.5 deg/s”, “3 deg/s” and
“6.0 deg/s”.

Select the desired scan rate setting
from the Scan Rate pick-list.

Scan Width Controls the width of the default scan sweep by
the automatic sensor scan function in the HMI
Prototype. Valid scan widths are “30 deg”, “60
deg” and “90 deg”.

Select the desired scan width setting
from the Scan Width pick-list.

Joystick Mode Controls the default manipulation mode of the
HMI control hardware joystick. Valid
manipulation modes are “Aircraft” and “Cursor”.
When in aircraft mode, pushing forward on the
joystick results in the sensor turret pitching
down and pulling back on the joystick results in
the sensor turret pitching up. When in cursor
mode, the pitch control relationship is reversed:
pushing forward on the joystick results in the
sensor turret pitching up and pulling back on
the joystick results in the sensor turret pitching
down.

Select the desired joystick mode setting
from the Joystick Mode pick-list.

Zoom Control
Mode

Controls the default manipulation mode of the
HMI control hardware zoom levers. Valid
manipulation modes are “Forward = Zoom In”
and “Forward = Zoom Out”. When in “Forward
= Zoom In” mode, pushing forward on the zoom
lever results in the sensor zooming in and
pulling back on the zoom lever results in the
sensor zooming out. When in “Forward =
Zoom Out” mode, the zoom control relationship
is reversed: pushing forward on the zoom lever
results in the sensor zooming out and pulling
back on the zoom lever results in the sensor
zooming in.

Select the desired zoom control mode
setting from the Zoom Control Mode
pick-list.

Display Sensors Allows the Memory Recall capability to be
enabled. In this mode, no sensor imagery will
be displayed.

If this box is not checked, the prototype
will run in Memory Recall mode.

9. Altitude Profile Display
The Altitude Profile Display provides a graphical representation of the simulated search
aircraft altitude profile and terrain elevation profile with respect to the scenario timeline.
The data points that create the aircraft altitude profile are a result of the waypoints defined
in the flight plan. As such, the numbers represented on the altitude profile correspond to
waypoint numbers in the flight plan. The aircraft altitude profile is drawn in blue and the
terrain elevation profile is drawn in green. The altitude profile display is presented in
Figure 24.

DRDC Atlantic CR 2006-280 65

Figure 24. Altitude Profile Display

10. The Scenario Summary Area
The Scenario Summary Area provides summary information about the AIMSsim
experimental scenario that you have created. The summary information includes an
estimated time for executing the scenario as well as information about the total number of
targets and non-targets defined in the scenario.

11. Managing Your Projects
A project is a logical means of grouping target information, flight plan information and
HMI configuration information (including sensor, environment and scenario landscape
information) to form a complete experimental scenario.

a. Saving Your Project
Once you have defined these elements of scenario information, you may preserve the
logical grouping by saving your project. To save a project, select File | Save Project on
the SGE window menu bar. Use the file browser to navigate to the desired directory and
click OK to save the project. This will create four files in the selected directory which
will store all of the information for the current project (i.e. ‘project.xml’, ‘flightplan.xml’,
‘config.xml’ and ‘targets.xml). Alternatively you may wish to overwrite an existing
project. In this case use the file browser to navigate to the directory that contains the
project files that you wish to overwrite and click OK.

b. Loading an Existing Project
To load an existing project, select File | Open Project on the SGE window menu bar.
Use the file browser to navigate to the directory than contains the existing project files
and select the ‘project.xml’ file - click OK. The SGE will load the project parameters
contained in these files.

E.6 Viewing a Specific Target Object
In previous sections explaining the use of the AIMSsim SGE, mention was made of a
Target view mode. This mode is toggled from within the SGE to view the placement
and orientation of target objects in 3D space with respect to the surrounding terrain.

E.7 Scenario Definition Files
The preferred method of creating Scenario Definition files is via the AIMSsim SGE.
This is particularly true with regard to the current version of the SGE as the file format
has been changed from plain ASCII text files to XML encoded files. The content of

66 DRDC Atlantic CR 2006-280

these files is still viewable using a simple text editor. Since two of the files that are
generated by the SGE (flightplan.xml and targets.xml) can be read natively by the
AIMSsim HMI, only the SGE configuration file (config.xml) will be discussed here.
In addition, a description of the target mapping file will also be presented. It is not
recommended that any of these files be edited outside of the SGE as this may cause
improper functioning.

1. Configuration File
The Configuration file contains information about the Scenario Landscape, the
configuration of the simulated sensors and the configuration of the HMI Prototype. It is
divided in five main sections each delimited by an XML tag set. An example of the SGE
configuration file is given below.

<config>
 <terrain>c:\AimsDB/terrains/Nerepis/ELVISS_ne.ive</terrain>
 <environment>
 <tod>1</tod>
 <vis>0</vis>
 <agtv_effect>1</agtv_effect>
 <flir_effect>2</flir_effect>
 </environment>
 <sensor>
 <win_cfg>0</win_cfg>
 <slaved>0</slaved>
 <agtv_fov_min>0.5</agtv_fov_min>
 <agtv_fov_max>40</agtv_fov_max>
 <agtv_mode>0</agtv_mode>
 <agtv_beam_width>0</agtv_beam_width>
 <agtv_sim_ccd>0</agtv_sim_ccd>
 <agtv_narrow_size>0</agtv_narrow_size>
 <agtv_wide_size>0</agtv_wide_size>
 <flir_fov_min>0.5</flir_fov_min>
 <flir_fov_max>40</flir_fov_max>
 <flir_mode>1</flir_mode>
 </sensor>
 <misc>
 <scan_rate>0</scan_rate>
 <scan_width>0</scan_width>
 <scan_enable>0</scan_enable>
 <joy_mode>0</joy_mode>

DRDC Atlantic CR 2006-280 67

 <zoom_mode>0</zoom_mode>
 </misc>
 <map>
 <mode>0</mode>
 <scale>50000</scale>
 <orient>0</orient>
 <symbol>0</symbol>
 <colour>0</colour>
 <search_history>0</search_history>
 <mark_function>0</mark_function>
 <recall_sensor>0</recall_sensor>
 <fov>60</fov>
 <slave_fov>0</slave_fov>
 </map>
</config>

The entire configuration file is enclosed within the <config>, </config> tag set. The five
major sections fall within this global set. The first major section of the configuration file
occurs within the <terrain> tag. The value contained in this tag represents an absolute
path to the location of the terrain file being used with the current scenario. The four other
sections (sensor, environment, map and misc) are delimited by XML tags similarly
named. These four sections correspond to the latter four tabs that occur in the SGE GUI.
Each of these sections contains properties that can be both viewed and set from the
appropriate tab in the SGE GUI. A description of these properties now follows.

Table 14. Configuration File Specification

XML TAGS DESCRIPTION VALUE

<terrain> The absolute file path to the terrain
database file.

A valid file path.

<environment> The second major section of the
configuration file which contains all
environment settings.

N/A

<tod>,</tod> The Time of Day (TOD) to be represented
in the HMI Prototype.

0.0 – 1.0

<vis>,</vis> The weather condition to be represented in
the HMI Prototype.

0 = Clear
1 = Degraded

<agtv_effect>,
</agtv_effect>

The capability of the simulated AGTV
sensor to penetrate the fog.

0.0 – 1.0

<flir_effect>,
</flir_effect>

The capability of the simulated FLIR sensor
to penetrate the fog.

0.0 – 1.0

68 DRDC Atlantic CR 2006-280

<sensor> The third major section of the configuration
file which contains all of the sensor
settings.

N/A

<win_cfg>, </win_cfg> An integer value that controls the layout of
the sensor video presentation in the HMI
Prototype.

0 = Both Equal
1 = AGTV Primary
2 = FLIR Primary
3 = AGTV Only
4 = FLIR Only

<slaved>, </slaved> A flag that, when set, “Slaves” the FLIR
sensor FOV to that defined for the AGTV.

0 = not slaved
1 = slaved

<agtv_fov_min>,
</agtv_fov_min>

A single precision floating point value that
assigns the minimum allowable AGTV FOV
that may be achieved in the HMI Prototype.
Measured in degrees.

0.5 – 40.0

<agtv_fov_max>,
</agtv_fov_max>

A single precision floating point value that
assigns the maximum allowable AGTV
FOV that may be achieved in the HMI
Prototype. Measured in degrees.

0.5 – 40.0

<agtv_mode>,
</agtv_mode>

An integer value that controls the zoom
control for the AGTV.

0 = Continuous
1 = Discrete

<agtv_beam_width>,
</agtv_beam_width>

An integer value that defines the default
width of the illuminator beam.

0 = Wide
1 = Narrow

<agtv_sim_ccd>,
</agtv_sim_ccd>

An integer value that defines the state of
CCD simulation.

0 = Do not simulate CCD
1 = Simulate CCD

<agtv_narrow_size>,
</agtv_narrow_size>

An integer value that defines the size (in
degrees) of the AGTV laser illuminator
beam when operating in “Narrow” FOV
mode.

0 = 2 deg

1 = 5 deg

<agtv_wide_size>,
</agtv_wide_size>

An integer value that defines the size (in
degrees) of the AGTV laser illuminator
beam when operating in “Wide” FOV
mode.

0 = 10 deg
1 = 15 deg
2 = 20 deg
3 = 25 deg

4 = 35 deg

<flir_fov_min>,
</flir_fov_min>

A single precision floating point value that
assigns the minimum allowable FLIR FOV
that may be achieved in the HMI Prototype.
Measured in degrees.

0.5 – 40.0

<flir_fov_max>,
</flir_fov_max>

A single precision floating point value that
assigns the maximum allowable FLIR FOV
that may be achieved in the HMI Prototype.
Measured in degrees.

0.5 – 40.0

<flir_mode>,
</flir_mode>

An integer value that controls the zoom
control for the FLIR.

0 = Continuous
1 = Discrete

<agtv_sim_ccd>,
</agtv_sim_ccd>

Enables/Disables the simulation of a CCD
camera in place of the AGTV sensor
simulation.

Select to enable (0=inactive, 1=active)

DRDC Atlantic CR 2006-280 69

<map> The fourth major section of the
configuration file which contains all
properties pertaining to the map.

N/A

<mode>, </mode> Defines the map (upper right quadrant) for
the scenario. Valid map selections are “No
Map”, “2D Paper”, “2D Terrain”, “2D
Shaded”, “Immersed”, “Immersed Shaded”,
“Tethered” and “Tethered Shaded”

Select the desired map mode setting
from the Map Mode pick-list

<scale>, </scale> Controls the default orientation setting for
the HMI Prototype MMD. Valid map scales
range from 1:1 to 1:250,000.

Select the desired map scale using
either scale bar selection, or manual
entry.

<orient>, </orient> Defines the default orientation setting for
the HMI prototype MMD. Valid map
orientations are “North Up”, “Aircraft Up”,
and “Camera Up”.

Select the desired map orientation
setting from the Map Orientation pick-
list

<symbol>, </symbol> Controls the default symbol used to
represent the position and orientation of
the simulated search aircraft for the HMI
Prototype MMD. Valid aircraft symbols are
“Rotary Wing”, “Fixed Wing”, “Pointer” and
“No Icon”.

Select the desired aircraft symbol
setting from the Aircraft Symbol pick-list

<colour>, </colour> Defines the colour of the terrain as either
colour or greyscale.

Select the desired colour setting from
the Colour Mode pick- list.

<search_history>,
</search_history>

Enables a function where blue markings
reveal past, or most recent search on
MMD.

Select to enable (0=inactive, 1=active)

<mark_function>,
</mark_function>

Enables the designated function. Select to enable (0=inactive, 1=active)

<fov>, </fov> Represents the Map field of view. Select a value from 1 – 120 deg.

<slave_fov>,
</slave_fov>

Enabled only when MMD is “Immersed” or
“Tethered”. It is similar to having an
additional sensor, which allows for zoom.

Select to enable (0=inactive, 1=active)

<misc> The fifth section of the configuration file
which contains miscellaneous settings.

N/A

<scan_enable>,
</scan_enable>

An integer value that controls the default
scan state setting.

Select to enable (0=inactive, 1=active)

<scan_rate>,
</scan_rate>

An integer value that controls the default
scan rate setting.

0 = 1.5 deg/s
1 = 3.0 deg/s
2 = 6.0 deg/s

<scan_width>,
</scan_width>

An integer value that controls the default
scan sweep width setting.

0 = 30 deg
1 = 60 deg
2 = 90 deg

<joy_mode>,
</joy_mode>

An integer value that controls the default
joystick mode setting.

0 = aircraft mode
1 = cursor mode

70 DRDC Atlantic CR 2006-280

<zoom_mode>,
</zoom_mode>

An integer value that controls the default
zoom mode setting.

0 = Forward-Zoom In
1 = Forward-Zoom Out

<recall_sensor>,
</recall_sensor>

Permission for sensors to be activated (not
a default function).

Select to enable (0=inactive, 1=active)

2. Target Mapping File
The Target Mapping file relates a “descriptive” name to a 3D model file name. This
approach was used in order to provide a meaningful name to the SGE user, while
maintaining the capability to represent an appropriate 3D model in the HMI Prototype.
The Target Mapping file contains two columns of alpha-numeric data. The first column
contains the descriptive name of the object, while the second column contains the file
name of the 3D model.
Both the SGE and the HMI Prototype read the contents of the Target Mapping file at
runtime. As such, you may add additional targets to the Target Mapping file by following
the simple two-column format. The target Type field present in the Target Definition file
utilizes a numerical index into the Target Mapping file. For this reason it is
recommended that any new entries be appended to the end of the file so as not to
invalidate any scenarios that were developed prior to your modifications.
The current target mapping file in the database is called target_map.txt.

DRDC Atlantic CR 2006-280 71

Distribution list

Document No.: DRDC Atlantic CR 2006-280

LIST PART 1: Internal Distribution by Centre:
 DRDC Atlantic Library (5)
 DRDC Atlantic Scientific Authority (2)

 TOTAL LIST PART 1 - 7

LIST PART 2: External Distribution by DRDKIM

 Jocelyn Keillor DRDC Toronto (1)

DRDC Toronto
PO Box 2000
M3M 3B9
Toronto, Ontario
Canada

 DRDKIM (1)

 TOTAL LIST PART 2 - 2

 TOTAL COPIES REQUIRED - 9

72 DRDC Atlantic CR 2006-280

This page intentionally left blank.

UNCLASSIFIED

DOCUMENT CONTROL DATA
(Security classification of the title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (The name and address of the organization preparing the document, Organizations
for whom the document was prepared, e.g. Centre sponsoring a contractor's document, or tasking
agency, are entered in section 8.)

Publishing: DRDC Atlantic

Performing: CAE Professional Services, 1135 Innovation Drive,
Suite 300, Ottawa, Ontario, K2K 3G7

Monitoring:

Contracting:

2. SECURITY CLASSIFICATION
(Overall security classification of the document
including special warning terms if applicable.)

UNCLASSIFIED

3. TITLE (The complete document title as indicated on the title page. Its classification is indicated by the appropriate abbreviation (S, C, R, or U) in parenthesis at
the end of the title)

AIMSsim version 2.2.1 User Manual (U)
AIMSsim Version 2.2.1 – Manuel de l’utilisateur

4. AUTHORS (First name, middle initial and last name. If military, show rank, e.g. Maj. John E. Doe.)

Oliver Schoenborn

5. DATE OF PUBLICATION
(Month and year of publication of document.)

March 2007

6a NO. OF PAGES
(Total containing information, including
Annexes, Appendices, etc.)

85

6b. NO. OF REFS
(Total cited in document.)

5

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical document, technical note or memorandum. If appropriate, enter the type of
document, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Contract Report User Manual for DRDC Atlantic AIMSsim experimental research
platform.

8. SPONSORING ACTIVITY (The names of the department project office or laboratory sponsoring the research and development − include address.)

Sponsoring: National Search and Rescue Secretariat, 400−275 Slater Street, Ottawa, Ontario K1A 0K2

Tasking: DRDC Atlantic

9a. PROJECT OR GRANT NO. (If appropriate, the applicable
research and development project or grant under which the document was
written. Please specify whether project or grant.)

3373AO

9b. CONTRACT NO. (If appropriate, the applicable number under which
the document was written.)

W7711−047904/TOR/001

10a. ORIGINATOR'S DOCUMENT NUMBER (The official
document number by which the document is identified by the originating
activity. This number must be unique to this document)

DRDC Atlantic CR 2006−280

10b. OTHER DOCUMENT NO(s). (Any other numbers under which
may be assigned this document either by the originator or by the
sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on the dissemination of the document, other than those imposed by security classification.)

Unlimited distribution

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the Document
Availability (11), However, when further distribution (beyond the audience specified in (11) is possible, a wider announcement audience may be selected.))

Unlimited announcement

UNCLASSIFIED

UNCLASSIFIED

DOCUMENT CONTROL DATA
(Security classification of the title, body of abstract and indexing annotation must be entered when the overall document is classified)

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that
the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the
information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts
in both official languages unless the text is bilingual.)

(U) This user manual provides an overview of how to use the software developed to support the
empirical investigation of a simulated user interface for an Advanced Integrated Multi−sensor
Surveillance (AIMS) system (formerly known as the Enhanced Low−Light Level Visible and Infrared
Surveillance System – ELVISS). The AIMS system is an electro−optical imaging system being
developed by the Defence Research and Development Canada (DRDC) – Valcartier to enhance the
capability of search and rescue (SAR) crews to operate effectively at night and in degraded weather
conditions. In order to ensure that a SAR operator would be able to use the system effectively and
with a minimal amount of training, a prototype human−machine interface (HMI) was developed to
evaluate design concepts. The latest development phase added important tracking and
motion−related functionality (amongst other things) to the system and gave it a new name AIMSsim.

(U) Le manuel de l’utilisateur fournit une vue d’ensemble sur l’utilisation du logiciel développé pour
appuyer la recherche empirique d’une interface−utilisateur de simulation pour le système AIMS
système multicapteur intégré de pointe pour la surveillance (anciennement connu sous l’appellation
ELVISS − système perfectionné de surveillance à intensification de lumière visible et à infrarouge).
Le système AIMS est un système d’imagerie électro−optique mis au point par Recherche et
Développement pour la défense Canada (RDDC) – Valcartier pour améliorer les capacités de
l’équipe de recherche et sauvetage (SAR). Elle pourra donc effectuer ses missions de façon plus
efficace dans l’obscurité et dans de mauvaises conditions météorologiques. Afin de s’assurer que
l’opérateur SAR est capable d’utiliser adéquatement le système et ce avec une formation minimale,
un prototype d’interface homme−machine (HMI) a été élaboré pour évaluer les principes de
conception. La dernière phase d’élaboration a, entres autres, permis de munir le système d’une
importante fonction de localisation et d’une fonction relative au mouvement. Ces ajouts lui ont valu
une nouvelle appellation, AIMSsim.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be helpful in cataloguing the
document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code
name, geographic location may also be included. If possible keywords should be selected from a published thesaurus, e.g. Thesaurus of Engineering and Scientific
Terms (TEST) and that thesaurus identified. If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with
the title.)

(U) sensor sytsem; human−machine interface; search and rescue; maritime patrol
prototype; evaluation

UNCLASSIFIED

This page intentionally left blank.

